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Abstract 

Large language models (LLMs) are increasingly trusted in domains such as education, 

research, and decision making. Despite their widespread adoption, fundamental questions remain 

about alignment and logic in LLM reasoning. This assurance gap poses significant risks in high-

stakes domains where reasoning integrity is critical. This study develops a mechanistic 

framework for reasoning verification by examining internal model computations rather than 

relying solely on behavioral outputs. We analyzed DeepSeek-R1 Distill Llama-8B latent feature 

activations across 2,000 mathematical problems of varying difficulty and domain. Employing 

Sparse Autoencoders for feature extraction, we identify specific internal features directly tied to 

reasoning behavior. We develop six novel metrics to quantify reasoning quality by logical 

structure, self-corrections, and coherence. Through correlation and causal intervention analysis 

across difficulty levels, we demonstrate that general reasoning features fracture into domain-

specific specialists under increased task complexity. Experimental manipulation of identified 

features produces significant causal effects on reasoning behavior, establishing that internal 

features functionally control specific aspects of reasoning quality. At higher mathematical 

difficulties, domain-experts emerge for geometry, number theory, and other mathematical 

subdomains. Additionally, we demonstrate the existence of distinct feature-governed reasoning 

modalities: a concise calculation-oriented mode and a verbose explanation-oriented mode  We 

establish that LLM reasoning is predictable by its internal feature structure, which is difficulty-

dependent and domain-specialized. This framework enables assurance of reasoning models 

based on legitimate internal monitoring, rather than output correctness alone, with implications 

for all reasoning-enabled AI applications.  
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1 Introduction

1.1 Justification 

Large language models (LLMs) have become central to the modern landscape of artificial 

intelligence [1]. Their capacity to generate detailed solutions and solve problems has already 

transformed how students learn, how researchers work, and how organizations make decisions. 

Models such as GPT, Claude, and DeepSeek are now used in tutoring platforms, data analysis 

systems, and technical support workflows [2]. Increasingly, these systems are being deployed as 

reasoning engines: tools expected not only to provide answers but also to justify them [3]. 

Reasoning, however, is the least transparent and most fragile capability of LLMs [4]. 

While they can generate chain-of-thought explanations, these traces do not necessarily reflect 

authentic internal processes [5]. In many cases, LLMs even fabricate reasoning steps that appear 

plausible but are not indicative of the computations used in producing the answer [6] [7]. They 

may disregard instructions to include or exclude reasoning, generating rationales inconsistently. 

When optimized to please human evaluators, they may output “reasoning-like” text because it 

maximizes reward, not because it corresponds to actual inference [8] [9]. These behaviors reveal 

a deep problem: correct answers and even coherent explanations do not guarantee trustworthy 

reasoning [10] [11]. Reasoning thus cannot be understood from a single benchmark alone [12]. 

Easier datasets may make reasoning appear generic, while more challenging datasets reveal 

whether reasoning features hold or fracture. 

The risks of this disconnect are substantial. In education, learners may adopt fabricated 

reasoning as valid [13]. In science and engineering, spurious justifications may obscure flawed 

conclusions. In policy, reasoning traces shaped to persuade rather than to reason may introduce 

systematic bias [14]. As LLMs become integrated into high-stakes domains, trust cannot rest 

solely on correctness of outputs [15]. Assurance requires evidence that genuine reasoning 

processes are occurring inside the model [16]. 

This study aims to provide such evidence. I develop a methodology to move beyond 

binary correctness to examine mechanistic reasoning assurance. By analyzing the internal 

representations of a reasoning-optimized LLM, I examine whether reasoning features can be 

isolated, characterized, and connected to reasoning quality. I further compare LLM activations 

and feature interpretations across datasets of increasing difficulty and identify reasoning feature 

subdomain specialization. 
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1.2 Mechanistic Interpretability

 Each recent frontier model release has focused on optimizing LLM performance on 

specific performance benchmarks. While these models represent significant progress, little work 

has been done in developing interpretability techniques. Recent advancements in the field of 

mechanistic interpretability have begun to make it possible to study the internal activations of 

LLMs at a finer scale [17]. Sparse autoencoders (SAEs) have emerged as a promising tool for 

this task [18] [19]. An SAE compresses the high-dimensional activations of a model layer into a 

set of sparse features that each activate selectively on particular inputs. The sparsity constraint 

encourages specialization: instead of every feature activating weakly all the time, many features 

activate strongly only in specific contexts. This structure allows researchers to identify features 

that align with recognizable concepts [20]. For instance, SAEs have been used to reveal features 

that track when text is written in Python code, or that detect stylistic markers such as formality 

[21]. In effect, SAEs allow researchers to investigate an LLM and identify recurring, 

interpretable patterns in its activations. While prior work has focused on topical or stylistic 

features, their potential to capture reasoning processes remains largely unexplored [22]. 

 

1.3 Reasoning Evaluation

While mechanistic interpretability has been applied to identify knowledge and style 

features, reasoning has received far less attention. Reasoning involves multi-step inference, 

abstract representations, and intermediate calculations. Whether such processes can be captured 

as features in LLMs, and whether these features are shared across domains or specialized within 

them, remains an open problem [22]. 

In parallel, evaluation of reasoning in LLMs has developed a different set of tools. The 

existing GSM8K benchmark, for instance, is a dataset that tests whether models can solve 

reasoning-based problems at a grade-school difficulty [23]. Higher complexity datasets, such as 

the Olympiad mathematics dataset, extend evaluation to more difficult questions via adding 

domains of number theory, geometry, and combinatorics [24]. These benchmarks have become 

central to measuring progress in reasoning ability. However, these benchmarks almost 

exclusively measure correctness, or if the expected dataset answer exactly matches the LLM 

output. They ask whether the model ultimately arrives at the right answer, with little regard to 
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intermediate reasoning steps. Even when chain-of-thought explanations are collected, there is 

little effort on examining whether those explanations correspond to genuine internal processes. A 

model can achieve high accuracy by recalling memorized patterns, exploiting superficial cues, or 

fabricating plausible reasoning [10], none of which constitute true reasoning. 

This focus on correctness leaves reasoning assurance underdeveloped. Knowing that a 

model can answer a question correctly does not tell us how it reached that answer, nor whether 

that same reasoning can generalize to a new question or domain. Assurance requires evidence 

that identifiable reasoning processes do occur inside the model, and that these processes are 

linked to reasoning quality.  

Critically, most existing evaluations study models on a single benchmark. This practice 

obscures an important dimension of reasoning: its sensitivity to problem difficulty. On GSM8K, 

reasoning features may appear to generalize broadly. Yet when the same features are examined 

on Olympiad problems, they may instead fail to reproduce reasoning and only demonstrate 

pattern-matching capabilities. Alternatively, increasing difficulty can fracture features into 

domain-specific patterns, potentially revealing modular structure invisible on simpler tasks [25]. 

Without contrasting behavior across difficulty levels, evaluations risk misclassifying features as 

general when they are in fact specialized. 

There is a need for more work at the intersection of interpretability and reasoning 

evaluation. Interpretability demonstrates that topical features exist within LLMs, while 

benchmarks demonstrate that reasoning behavior emerges. However, the validation of reasoning 

via internal evidence remains missing.  

This study addresses that gap by developing a methodology for mechanistic reasoning 

assurance. I examine reasoning mechanisms within DeepSeek-R1 Distill Llama-8B, a 

representative reasoning-optimized LLM. The approach uses sparse autoencoders and judge-

LLM domain classification to classify the roles and domains of extracted features. I introduce six 

new reasoning-quality metrics designed to quantify the structure and reliability of model outputs 

beyond correctness alone. This study applies the methodology across GSM8K and Olympiad 

mathematics to test how reasoning features that appear generic on simpler problems fracture into 

domain-specific patterns under complex tasks. Together, this methodology combines feature 

extraction with automated interpretation, introduces new reasoning-quality metrics, and uses 

dataset difficulty as an experimental variable to probe reasoning assurance mechanistically. 
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2 Methods

2.1 Data 

In this study, the primary data consisted of two complementary sets of reasoning traces 

generated with DeepSeek R1 Distill Llama-8B: 1,000 LLM responses to problems from grade-

school math and 1,000 responses to problems from advanced Olympiad mathematics. For each 

problem and response instance, we captured LLM external and internal signals of reasoning. The 

external layer included the model’s step-by-step reasoning output, final answer, and process 

metadata such as response length, token counts, and formatting structure. The internal layer 

consisted of residual stream activations, and a signature of the top 50 most active features for 

that problem. Because the same LLM and autoencoder were used across both datasets, feature 

identifiers indices are consistent, enabling direct cross-dataset comparison. Finally, every 

reasoning trace was evaluated using six reasoning-quality metrics (detailed in Section 2.5), 

providing a unified framework to analyze outputs, activations, and the impact of task difficulty. 

 

2.1.1 Model Selection 

This study examined the internal reasoning processes of a frontier reasoning-tuned large 

language model (LLM). All experiments were conducted using DeepSeek R1 Distill Llama-8B, a 

distilled variant of the DeepSeek R1 reasoning model built on the LLaMA-3.1-8B transformer 

architecture. DeepSeek R1 Distill belongs to a recent class of reasoning-optimized LLMs, which 

are trained specifically to output multi-step chain-of-thought style explanations.  

The DeepSeek R1 family was developed with training on chain-of-thought data and 

reinforcement learning objectives to encourage multi-step inference. The LLaMA-distilled 

variant used in this study was produced via knowledge distillation, in which a student model is 

trained to mimic the behavior of a larger teacher model. In this case, the teacher was DeepSeek 

R1, and the student was optimized to capture reasoning traces, allowing reasoning ability itself to 

be transferred during distillation. This property made DeepSeek R1 Distill particularly suitable 

for an extended mechanistic study requiring thousands of forward passes. All model loading and 

inference were conducted through the HuggingFace Transformers library. 
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Internally, LLaMA-family models follow the transformer architecture, in which each 

block consists of attention and feedforward sublayers connected by a residual stream. The 

residual stream can be understood as the model’s “running notebook”. At each block, it 

accumulates contributions from prior layers and passes them forward. More formally, the 

residual stream is the sum of the attention and multi-layer perceptron outputs at each block, 

making it the locus for representational information that drives the model’s next steps. Hence, 

sparse autoencoders focused on the residual stream can potentially recover features aligned with 

human-interpretable concepts. Probing this stream offers direct access to the latents that the 

model actively maintains for reasoning, before they are collapsed into logits for output. 

In this study, activations were collected from the residual stream of block 19 

(blocks.19.hook_resid_post), a mid-to-late layer out of Deepseek’s 32 layers. Early layers 

primarily encode token-level embeddings, while final layers reflect surface-form outputs. By 

contrast, mid-level residual streams contain semantically rich intermediate representations 

thought to support reasoning. These activations were subsequently analyzed with a Sparse 

Autoencoder (SAE) trained for this model family, yielding compressed, interpretable feature 

vectors for each problem instance, discussed further in 2.2. 

2.1.2 Dataset Selection 

Two datasets of contrasting difficulty were used to probe reasoning features. The Grade-

School Math 8K dataset (GSM8K) is a benchmark of arithmetic and word-based problems 

designed for grade-school level reasoning [23]. Problems typically require a handful of explicit 

steps and involve straightforward operations such as ratios, addition, subtraction, and basic 

algebra. A subset of 1,000 problems was randomly sampled for analysis. The Olympiad 

Mathematics (Olympiads) dataset is a subset of 1,000 competition-level problems drawn from 

sources such as AMC, AIME, USAMO, and IMO archives [24]. These problems span advanced 

algebra, number theory, geometry, and abstract math. Unlike GSM8K, Olympiad tasks often 

demand symbolic manipulation, multiple layers of inference, or proof-oriented reasoning. 

The use of these two datasets enabled a comparative difficulty design: GSM8K served as a 

baseline where reasoning features may appear broad and generic, while Olympiad problems 

acted as a stress test, revealing whether those same features fractured into specialized 

subdomains under higher complexity. 
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2.1.3 Problem Domain Classification 

 As mentioned in section 2.1.2, I pull problems from two datasets of varying difficulties. 

To investigate LLM reasoning feature specialization, it is critical to classify these problems into 

their respective mathematical subdomains. We classify problems into one of five domains: basic 

algebra/arithmetic, geometry, advanced algebra, number theory & combinatorics, and abstract 

math/analysis. I use Llama 4 Maverick as a “judge” LLM and provide it with example problems 

and a specialized prompt for classification of problems. The judge LLM is used to automatically 

classify each problem into one of those subdomains, which is important for later analysis. 

 

2.1.4 Reasoning Metrics 

For each problem instance, the model was prompted to produce a step-by-step reasoning 

trace along with its final answer. In addition to the output, we record the metadata of response 

length, line breaks, formatting markers, and the feature activations. We record the indices of the 

50 highest activating features on each problem, providing that they are above our minimum 

activation threshold of 50. Feature indices are constant across all problems and datasets, as they 

are unique to the Deepseek model itself. Thus, we can analyze feature performance across 

problems and domains given their activation data.  

Each response was further evaluated against a set of six reasoning-quality metrics: step 

indicators, calculations, reasoning words, explanation phrases, corrections, and structured 

indicators. Their formal definitions and implementations are described in Section 2.5. 

2.2 Sparse Autoencoder Feature Extraction 

2.2.1 Motivation for SAE 

The internal states of a large language model are high-dimensional and densely 

entangled, making them extremely difficult to interpret directly. In DeepSeek R1 Distill Llama-

8B, the residual stream at block 19 has 4,096 dimensions, yet the model must represent far more 

distinct concepts than this dimensionality allows. As a result, many features are superposed: 

multiple unrelated concepts overlap in the same neurons, and conversely, individual concepts are 

spread across many neurons. Superposition is an efficient representational strategy, but it renders 

raw activations nearly opaque, since no single value or direction corresponds cleanly to a 

recognizable idea. 
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Sparse autoencoders (SAEs) are designed to address this problem. By training an 

overcomplete dictionary of features and enforcing sparsity in the hidden layer, SAEs map dense 

activations into a higher-dimensional space where only a small fraction of features fire at once. 

This sparsity forces specialization, encouraging different features to encode distinct, consistent 

patterns rather than overlapping mixtures. In other words, the autoencoder “untangles” 

superposed signals, yielding features that can be studied as discrete representational units. 

Empirical work has shown that SAE features often correspond to semantically 

meaningful concepts, such as detecting when text is Python code, identifying stylistic formality, 

or tracking arithmetic operators. This suggests that even abstract processes like reasoning may be 

recoverable if they are encoded in a superposed form. For reasoning assurance, this capability is 

critical: if reasoning structures exist in the residual stream but are hidden in tangled activations, 

SAEs provide the tool to expose them as interpretable features. 

 

2.2.2 Architecture of the SAE 

A sparse autoencoder (SAE) is a neural network designed to map dense residual 

activations into a higher-dimensional but sparse latent space, where only a small subset of 

features fire for any given input. This architecture is motivated by the superposition hypothesis: 

in a transformer residual stream, the number of features the model must represent greatly 

exceeds the dimensionality of the hidden state, forcing many unrelated concepts to overlap in the 

same neurons. SAEs address this by learning an overcomplete dictionary of features, combined 

with sparsity constraints that encourage disentanglement.  

 

Let 𝑥𝑥 ∈ 𝑅𝑅𝑑𝑑 denote a residual stream activation vector, with 𝑑𝑑 = 4096 for block 19 in 

DeepSeek R1 Distill Llama-8B. The encoder projects 𝑥𝑥 into a higher-dimensional hidden vector 

ℎ ∈ 𝑅𝑅𝑘𝑘 with 𝑘𝑘 ≫ 𝑑𝑑: 

ℎ = σ(𝑊𝑊𝑒𝑒𝑥𝑥 + 𝑏𝑏𝑒𝑒) 

where 𝑊𝑊𝑒𝑒 ∈ 𝑅𝑅𝑘𝑘×𝑑𝑑 and 𝑏𝑏𝑒𝑒 ∈ 𝑅𝑅𝑘𝑘 are encoder parameters, and 𝜎𝜎 is a rectified linear unit 

(ReLU) to ensure nonnegative activations. The decoder reconstructs the input as: 𝑥𝑥� = 𝑊𝑊𝑑𝑑ℎ + 𝑏𝑏𝑑𝑑, 

with decoder parameters 𝑊𝑊𝑑𝑑 ∈ 𝑅𝑅𝑑𝑑×𝑘𝑘,  𝑏𝑏𝑑𝑑 ∈ 𝑅𝑅𝑑𝑑. 
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Further, the autoencoder is trained to minimize a reconstruction loss with an additional 

sparsity penalty: 

ℒ = |𝑥𝑥 − 𝑥𝑥�|22 + λ|ℎ|1 

 

The 𝐿𝐿1 term ensures that only a small subset of hidden units fire strongly for any given 

input. In practice, some SAEs also use top-𝑘𝑘 sparsity, in which only the 𝑘𝑘 largest hidden 

activations are retained and the rest are zeroed out. Both approaches constrain overlap, reduce 

interference, and push different features to specialize. This is the mechanism by which SAEs 

“untangle” superposed signals into more monosemantic features. 

Our SAE architecture, illustrated in Figure 1 below, expanded each 4,096-dimensional 

activation into ~16,000 hidden units. Despite this larger space, sparsity meant that typically 

fewer than 50 features fired per problem instance. This design combines a large dictionary of 

possible features with only a few active features per input, making the resulting features both 

expressive and interpretable. 

 
Figure 1: Sparse autoencoder workflow for mapping LLM activations into sparse features and reconstructing inputs. 

Figure created by student researcher using React in 2025. 
 

Each hidden unit corresponds to a feature direction in activation space: the encoder 

weights 𝑊𝑊𝑒𝑒[𝑗𝑗] define when feature 𝑗𝑗 fires, and the decoder weights 𝑊𝑊𝑑𝑑[: , 𝑗𝑗] describe how it 

contributes back to reconstruction. A feature is considered interpretable if it activates 

consistently in the presence of a coherent signal (e.g., addition operations, formal proof 

language). Prior work shows that SAEs trained on LLM activations reliably recover such 

monosemantic units. 

For each problem instance in GSM8K and Olympiad datasets, residual activations at 

block 19 were passed through the pretrained SAE. The top-50 most active features above a trivial 
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threshold were retained, along with their normalized activation magnitudes, forming a feature 

signature of the model’s internal reasoning state. These signatures served as the basis for 

automated interpretation and comparative analyses. 

 

2.2.3 Hook Point Selection 

This study probes activations from the residual stream at block 19 of DeepSeek R1 Distill 

Llama-8B. The residual stream integrates contributions from both the attention and MLP 

sublayers, preserving the cumulative state of computation. Block 19 was chosen out of a total of 

32 because mid-to-late transformer layers have been shown to hold the richest internal 

representations. Early layers are dominated by word identity and positional encoding, while the 

very last layers are tuned to produce output tokens. By contrast, middle layers contain the 

intermediate abstractions the model uses to carry out multi-step reasoning. Probing at block 19 

therefore provides access to reasoning processes as they unfold, at a point where the computation 

is neither too shallow nor already collapsed into final predictions. 

 

2.2.4 SAE Configuration 

We used a pretrained sparse autoencoder (SAE) distributed as deepseek-r1-distill-llama-

8b-qresearch via the sae_lens library and loaded it at the residual-stream hook point block 19. 

We report the encoder matrix dimensionality 𝑊𝑊enc ∈ 𝑅𝑅𝑘𝑘×𝑑𝑑 from the SAE encoder weight matrix 

at runtime with 𝑑𝑑 = 4096.  

For each problem instance, we extracted hidden states from layer index 19 and mean-

pooled across the sequence dimension to obtain a single residual vector per prompt before SAE 

encoding. The resulting latent vector was sparse; we retain only the top-50 features per instance, 

with activations below 0.01 discarded. The indices and magnitudes of these active features 

constituted the feature signature used in all subsequent analyses. 

 

2.2.5 Feature Example 

To provide a concrete illustration of the type of units recovered by the sparse 

autoencoder, we highlight Feature F25111, a feature that emerged consistently in the grade-

school GSM8K dataset. Figure 2 shows the proportion of GSM8K problems in each 

mathematical domain where F25111 fired above the activation threshold of 0.01. The feature 

was most active in geometry (44%), with substantial coverage in arithmetic (34%) and 
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percentages/ratios (32%). It appeared less frequently in algebra (20%), and did not activate for 

probability/statistics (0%). 

 

 
Figure 2: Activations of Feature 25111 across GSM8K mathematical domains. Figure created by student researcher 

using Python in 2025. 
 

This distribution suggests that F25111 encodes a broad numerical reasoning signal that 

generalizes across elementary mathematical tasks, with particularly strong alignment to 

quantitative reasoning. The absence of F25111 activations in probability/statistics indicates that 

this feature does not generalize across all forms of mathematical reasoning. Instead, it specializes 

in deterministic, step-based computation and fails to respond when problems involve uncertainty 

or distributional reasoning. 

This example demonstrates interpretability insights gatherable from sparse features. 

Discrete internal activations can be mapped to human-recognizable concepts. While F25111 

appears to capture a generic quantitative reasoning process in GSM8K, later analyses will 

examine whether such features remain broad under Olympiad-level difficulty or fracture into 

domain-specialized patterns. 
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2.3 Automated Feature Interpretation 

For each problem instance, the SAE outputs a set of indices corresponding to the most 

active features and their associated activation magnitudes. However, while sparse features are 

more coherent than their raw activations, they are not inherently self-describing. Each feature is 

defined only by its activation pattern, leaving open the question of what reasoning behavior it 

corresponds to. To address this, I develop an automated sparse feature interpretation pipeline 

(auto-interpretation) using a judge language model, as illustrated in Figure 3. As each feature has 

a unique identifier, it is possible to assemble a feature profile based on its activations across 

many different queries. Given a large amount of feature activation records on various queries, we 

can identify which queries correlate with activations of specific features. I use Llama 4 Maverick 

as the judge LLM, with a customized prompt tuned for feature interpretation. 

 
Figure 3: Automated feature interpretation via judge LLM. Figure created by student researcher using React in 

2025. 
 

To interpret a particular feature, we first isolate within the dataset the top 5 problems that 

caused the highest activations of that feature, along with the 5 zero-activating problems. The 

judge is given the text of the query, the response, the feature activations, as well as the problem 

classification as outlined in section 2.1.3. The judge model is instructed to identify patterns 

between activations and docs, and the final resulting interpretation is saved.  

 

2.4 Reasoning Output Generation 

Reasoning traces were generated by prompting DeepSeek R1 with natural language 

questions from each dataset. For GSM8K, 1,000 problems were randomly sampled from both the 

training and test splits of the openai/gsm8k benchmark. For Olympiad mathematics, 1,000 

problems were sampled from the aslawliet/olympiads dataset, which aggregates from the AMC, 
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AIME, and IMO archives. Each problem was transformed into a standardized prompt of the 

form: 

Question: < problem text >  

Answer:  

The model was then allowed to autoregressively generate a continuation under 

constrained sampling. For GSM8K, generation was capped at 300 new tokens to match the short 

length of arithmetic reasoning traces. After finding token cutoffs during testing, the cap was 

increased to 500 new tokens for Olympiad problems which allow for extended proof-like 

arguments and longer symbolic derivations. A temperature of 0.3 was used to reduce stochastic 

variation while preserving the diversity inherent to reasoning. 

For each generation, we systemically log as metadata the raw response text, response 

length, and context length alongside metrics such as generation time and length. We classify 

each generation into their mathematical subdomain. For both datasets, six core metrics were 

extracted: step indicators, calculations, reasoning words, explanation phrases, corrections, and 

structural markers (Section 2.5). For Olympiad data, five further proof-oriented metrics were 

applied, including proof language, logical connectives, mathematical formalism, case analysis, 

and generalization attempts. 

To account for potential failure cases, each problem was also scored on five complexity 

dimensions by an auxiliary LLM-judge (computational load, reasoning steps, conceptual 

abstraction, setup complexity, and mathematical domain). Where API failures or parsing errors 

occurred, a rule-based fallback computed these scores directly from problem text. Fallback usage 

was logged per instance to maintain dataset integrity. 

 

2.5 Reasoning Quality Metrics 

 Traditional reasoning benchmarks evaluate models almost exclusively on correctness: 

whether the final answer matches the ground truth. While useful, this metric alone cannot 

distinguish between reliable reasoning and spurious success. A model may guess correctly, recall 

a memorized template, or fabricate a plausible chain-of-thought without engaging in reasoning. 

To probe reasoning assurance, this study introduced a set of six reasoning-quality metrics, 

illustrated in Table 1, that quantify the structure and reliability of reasoning traces independent of 

correctness. 
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Table 1: Custom reasoning quality metrics and significance. Table created by student researcher in 2025. 

Metric Definition Example Significance 

Step Indicators Transitional phrases that 
mark reasoning progression 

“first”, “second”, 
“third”, “next”, 
“then”, “finally” 

Indicates structured 
thinking 

Calculations 
Mathematical operation 
symbols and computational 
indicators 

“ = ”, “ + ”, “ - ”, 
“ × ”, “ ÷ ”, “ * ”, 
“ / ” 

Direct measure of 
quantitative reasoning 
and computation 

Reasoning Words 
Logical connectors 
establishing causal 
relationships 

“therefore”, “so”, 
“thus”, “because”, 
“since”, “hence”, 
“consequently” 

Explicit logical 
reasoning and 
argument construction 

Explanation Phrases Expressions showing 
deliberate problem-solving 

“let me”, “we need 
to”, “to find”, “to 
calculate”, “to 
solve”, “let’s” 

Shows deliberate 
planning of solution 
steps 

Corrections Self-identified errors and 
reasoning revisions 

“wait”, “actually”,  
“correction”, 
“mistake”, 
“wrong” 

Demonstrates error 
detection and self-
correction 

Structured 
Indicators 

Organizational markers for 
systematic breakdown 

“1.”, “2.”, “3.”, 
“ – ” 

Decomposition for 
complex multi-step 
reasoning 

 

These six metrics together provide a structured framework for evaluating reasoning 

quality. By capturing different signals for organization, computation, logical coherence, 

planning, and self-correction, they allow reasoning traces to be quantified along multiple 

dimensions rather than treated as binary success or failure. Importantly, each metric isolates a 

distinct facet of reasoning behavior. We will employ these custom metrics to great effect in later 

analysis sections.  

We apply these custom metrics to a sample GSM8K problem, shown below in Figure 4. 

The problem involves counting the number of animal legs on a farm. The model’s response 

includes multiple reasoning behaviors: arithmetic calculations (“10 * 2 = 20”), logical 

connectives (“so”, “then”, “therefore”), and corrections (“wait, let me think again”). On this 

question, we detect 2 step indicators, 26 calculations, 25 reasoning words, and 3 explanation 

phrases, alongside other markers. These statistics provide a process-level fingerprint of the actual 

reasoning trace. 
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Figure 4: Example application of reasoning-quality metrics to LLM reasoning trace. Figure created by student 

researcher using React in 2025. 
 

By quantifying these features, reasoning quality can be studied as a continuous variable 

rather than a binary success/failure. For example, a response that reaches the wrong final answer 

but demonstrates 20 calculations and consistent step indicators still is reflective of genuine 

reasoning, whereas a correct answer with no intermediate markers may indicate pattern-matching 

or guessing.  

 

2.6 Comparative Difficulties 

A key objective of this study was to examine how reasoning features behave as task 

complexity increases. GSM8K problems require only a few arithmetic or algebraic steps, 

providing a baseline where reasoning features may appear broad and generic. Olympiad tasks, by 

contrast, demand extended symbolic reasoning and domain-specific skills such as geometry, 

combinatorics, or number theory, creating a natural stress test for reasoning under complexity. 

Both datasets were processed through the same pipeline, using identical prompting, inference, 

feature extraction, and reasoning-quality metrics. This design ensured that any observed 

differences could be attributed to difficulty and domain rather than inconsistencies in generation 

or analysis. 
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3 Results and Discussion 

3.1 Extracted Feature Distributions 

By comparing GSM8K and Olympiad instances, we observe distinct patterns that reflect 

the complexity of reasoning engaged. On GSM8K, the number of active features per problem is 

consistently low. Most problems triggered only a handful of features, with a median in the single 

digits. The distribution is tightly concentrated, as shown in Figure 5, indicating that elementary 

problems are solved with relatively broad and generic reasoning representations. This suggests 

that the model can reuse a small set of internal features across many simpler tasks without 

requiring deep specialization. 

 
Figure 5: Comparisons of activated features per problem between datasets. Figure created by student researcher 

using Python in 2025. 

By contrast, Olympiad problems produce a much denser activation landscape. The 

histogram shows a pronounced shift toward larger numbers of features. During data collection, 

we cap recorded features at the top 50 highest-activating features. We see that the Olympiad 

queries nontrivially fire 50+ features above the activation threshold a significant portion of the 

time. The boxplot comparison in Figure 5 highlights this contrast: Olympiad problems exhibit a 

higher median, a broader interquartile range, and a longer upper tail. 

These patterns suggest that problem complexity directly influences the internal feature 

budget. Easier tasks can be handled with catch-all generic reasoning features, whereas complex 

Olympiad-level tasks demand richer and more specialized activation signatures. This evidence 

aligns with the hypothesis that reasoning under difficulty is not just longer or noisier, but 

structurally different in how it engages the model’s internal representational space. 

Figure 5A: Boxplot of activated features per problem.  Figure 5B: Distribution of activated features per problem  
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3.2 Reasoning Feature Testing 

 For all subsequent results, the central focus is on features that genuinely capture 

reasoning rather than incidental patterns. Although the dataset was curated to emphasize 

reasoning, the top 50 activating features recorded per problem inevitably include units that 

respond to superficial cues such as formatting or domain-specific vocabulary. Distinguishing 

these from features that drive structured inference is therefore critical. To make this separation, I 

systematically test the correlation between feature activations and the reasoning-quality metrics. 

For an example test, recall Feature F25111 which was auto-interpreted in Section 2.3 as a 

“basic quantitative reasoning” feature. However, to rigorously evaluate F25111’s influence on 

reasoning, I statistically test the relationship of F25111’s activation levels in the GSM8K dataset 

on the step indicator metric as described earlier. Because both variables are continuous, a 

Pearson correlation test is employed to assess the linear association between feature activation 

and reasoning quality. 

 
Figure 6: Correlation between Feature 25111 activation and reasoning quality on GSM8K. Figure created by 

student researcher using Python in 2025. 

We correlate F25111’s activation magnitude with the step-indicator metric. The result, 

shown above in Figure 6, reveals a statistically significant relationship that higher activation of 
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F25111 predicts greater reasoning. Strong activations of F25111 displayed a 1.9x increase in 

reasoning steps relative to low-activation cases, with a significant p-value of 0.02. 

Importantly, this analysis includes zero-activating examples where the feature did not fire 

at all, indicated by the points with x-coordinate value of zero in the same Figure 6. Excluding 

them would bias the sample toward successful activations and thus inflate the correlation. By 

retaining zero-activation data points, we confirm that reasoning quality systematically differs 

between problems that engage the feature versus those that do not. This strengthens the 

interpretation that F25111 acts as a genuine feature of structured reasoning. This establishes a 

foundation for examining whether such reasoning features remain stable across domains, or 

fracture under higher levels of difficulty. 

To test whether feature-reasoning correlations reflect causal relationships, we performed 

activation interventions on Feature 25111. We systematically manipulated Feature 25111 across 

three conditions: natural (baseline), suppressed (activation=0.0), and enhanced (activation=2.0). 

Intervention results shown below in Figure 7 revealed a significant relationship with correction 

phrases, the number of times the LLM revisited and revised its own reasoning. 

 
Figure 7: Feature 25111 activation intervention results. Figure created by student researcher using React in 2025. 

Under the suppressed condition, when F25111 was silenced, the model produced a mean 

of only 1.24 corrections per problem. The natural baseline condition yielded 1.84 corrections, 

representing a 48% increase. Most strikingly, the enhanced condition elicited 4.90 corrections 

per problem, a 166% increase over baseline and a nearly fourfold increase over suppression. 
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A one-way ANOVA confirmed these differences were highly statistically significant with 

F(2, 147) = 72.18, p < 0.001. The effect size was substantial, with η² = 0.495, indicating that the 

experimental manipulation of F25111 explained 49.5% of the variance in self-correction 

behavior. This large effect size demonstrates that F25111 is not merely correlated with reasoning 

quality but causally drives the model's tendency to monitor and correct its reasoning. 

These findings provide strong mechanistic evidence that F25111 functions as an internal 

reasoning controller. When suppressed, the model generates answers with minimal self-

evaluation. When enhanced, it engages in significantly more metacognitive behavior, repeatedly 

checking and revising its reasoning chain. This pattern aligns with the feature's interpretation as a 

quantitative reasoning unit: problems requiring numerical inference benefit from iterative 

verification, and amplifying F25111 intensifies this self-monitoring process. 

Critically, this intervention confirms that the correlations observed earlier reflect genuine 

causal structure. We establish that sparse autoencoder features are not merely descriptive but 

functionally operative components of the model's reasoning machinery. 

 

3.3 Subject Matter Expert Features 

 We next examine whether certain features specialize in distinct mathematical 

subdomains. To do so, we grouped Olympiad problems by domain (basic algebra, geometry, 

advanced algebra, number theory, abstract mathematics) as described in Section 2.1.3, and 

measured average feature activation within each domain subset of problems. This approach 

enables the identification of subject matter expert (SME) features that consistently activate more 

strongly in one domain relative to others.  

 
Figure 8: Specialization of selected features across mathematical subdomains in Olympiad dataset. Figure created 

by student researcher using React in 2025. 
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We examine several features of interest, whose domain-specific activations are illustrated 

in Figure 8. Higher activations in a category are red, and each feature’s highest specializing 

category is boxed. For instance, F25111 highly activates for basic algebra questions, aligning 

with its earlier interpretation as a quantitative reasoning feature for basic arithmetic. It 

demonstrates a 6.5x higher activation in the basic algebra domain compared to other domains. 

Similarly, F53164 and F8690 consistently specialize in geometry, both activating 5x more than 

other domains. In contrast, F14998 and F44576 show selectivity for number theory.  

To rigorously assess whether the observed domain-specific activation patterns were 

statistically meaningful, we applied a one-way analysis of variance (ANOVA) and the non-

parametric Kruskal-Wallis test. The ANOVA evaluates whether mean activation levels differ 

significantly across the five mathematical domains, under the assumption of approximate 

normality, while the Kruskal-Wallis test relaxes these assumptions by comparing ranked 

distributions. Employing both tests ensures robustness, as feature activations are sparse and often 

skewed. Importantly, zero-activation cases were retained in each group to reflect the full 

activation profile of a feature, since absence of firing is as informative for specialization as 

consistent activation. 

The results presented in Table 2 provide clear evidence of subdomain selectivity for 

several features. Feature 8690 exhibited the strongest statistical evidence of specialization. 

F14998 and F44576 also displayed significant specialization with number theory. F25111 

showed weaker dependence, reaching significance under the Kruskal-Wallis test but not under 

ANOVA, consistent with its role as a broad quantitative reasoning marker rather than a sharply 

localized expert feature. By contrast, F53164 and F2308 did not exhibit statistically significant 

differences across domains (p > 0.05). 

Table 2: Significance testing of feature domain specialization. Table created by student researcher in 2025. 

Feature Domain Specialty ANOVA p-value Kruskal-Wallis p-value 

25111 Basic Algebra 0.117 0.031 * 

53164 Geometry 0.287 0.281 

8690 Geometry 0.0018 * < 0.0001 * 

14998 Number Theory 0.011 * 0.004 * 

44576 Number Theory 0.048 * 0.044 * 

2308 Geometry 0.395 0.502 
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 These findings carry several important implications. First, they provide rigorous 

confirmation that reasoning features are not uniformly distributed across tasks, but instead 

cluster into domain-specialized units under mathematical reasoning. This establishes mechanistic 

evidence for a form of modularity: certain internal features act analogously to human subject 

matter experts, activating selectively when problems fall within their area of competence. 

Second, the mixture of significant and non-significant results indicates that the feature 

space is heterogeneous, containing both general features that operate broadly across problem 

types and also specialist features that fire predominantly within a single domain. This dual 

structure suggests that large language models do not rely solely on generic reasoning heuristics, 

nor do they fully compartmentalize reasoning into isolated silos. Instead, they appear to combine 

transferable reasoning markers with SME-like components, producing a hybrid representational 

strategy. 

Finally, the emergence of SME features under Olympiad-level tasks supports the claim 

that increasing difficulty drives representational reorganization. Whereas GSM8K problems were 

handled with a relatively small set of generic reasoning features, complex Olympiad problems 

elicited specialized circuits that fractured along mathematical subdomains. 

 

3.4 Generic Math Feature 

 Previously, features were identified that specialize in distinct mathematical subdomains, 

consistent with the hypothesis of subject matter expert (SME) units. However, not all features 

fall neatly into this pattern. Some appear to serve a broader role, activating robustly across 

multiple domains. 

 We initially suspected that Feature 25111 was such a “generic math” feature, as it 

consistently appeared in GSM8K and displayed strong correlations with step-indicator reasoning 

metrics. Yet, closer analysis revealed that its activations are disproportionately concentrated in 

basic algebra, and statistical testing confirmed that it is better characterized as an elementary 

quantitative reasoning unit rather than a truly domain-general feature. This finding demonstrates 

that apparent generality at lower difficulty can collapse into specialization under Olympiad-level 

reasoning. 

 By contrast, Feature 44576 emerges as a far stronger candidate for a genuinely general 

mathematical feature. While earlier we identified its specialization in number theory, it maintains 
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the highest activation magnitude across all domains, outperforming even domain-specific SME 

features in their home categories as shown in Figure 9. For example, in geometry and advanced 

algebra, Feature 44576 surpasses features specialized to those domains. F44576 is the highest 

activating feature across all five domains of basic algebra, geometry, advanced algebra, number 

theory, and abstract math. 

 
Figure 9: F44576 activations compared to best domain SME features. Figure created by student researcher using 

Python in 2025. 
 

 This pattern may be justified by the longstanding mathematical view that number theory 

underpins much of mathematics. Mathematicians have maintained that many branches, from 

algebraic structures to combinatorics and cryptography, ultimately reduce to number-theoretic 

foundations [27]. If so, then a number-theory aligned feature like F44576 may naturally manifest 

across diverse domains, serving as a structural generalist rather than a narrow SME. 

 

3.5 Reasoning Modalities 

3.5.1 Distinct Modalities 

 Psychologists and cognitive scientists have long identified unique reasoning modes for 

humans such as analytical reasoning, moral reasoning, and probabilistic reasoning [28]. Prior 

work has suggested that LLMs, having been trained on human data, may reason in a similar 
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fashion [29]. I identify that LLM reasoning in the mathematical domain also occurs in two key 

modalities: a verbose explanation-heavy teaching mode and a concise calculations-based 

execution mode.  

 We first analyze the reasoning quality metrics as described in Section 2.5. We calculate 

the Pearson correlation of all reasoning metrics over the 1,000 records (n=1000) of the GSM8K 

data, as shown below in Figure 10.  

 

 
Figure 10: Reasoning metrics correlation matrix on GSM8K. Figure created by student researcher using Python in 

2025. 
 

 We focus on the metrics of calculations and explanation phrases as our main 

measurements of calculative versus verbose reasoning. Calculations quantify concise, step-based 

computational work, whereas explanation phrases capture extended natural language exposition. 

These represent opposing reasoning modes: compact stepwise computation versus extended 

natural language elaboration. We quantify their impact on other selected metrics that measure 

structure, and output verbosity, as shown below in Table 3.  
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Table 3: Correlations between reasoning quality metrics. Table created by student researcher in 2025. 

Metric 1 Metric 2 Pearson r Pearson p-value Spearman p-value 

Calculations Explanation Phrases −0.350 3.53 × 10⁻³⁰ 2.80 × 10⁻¹⁹ 

Calculations Structure Indicators 0.706 7.18 × 10⁻¹⁵² 1.84 × 10⁻⁹³ 

Calculations Corrections −0.341 1.09 × 10⁻²⁸ 5.66 × 10⁻²⁹ 

Calculations Response Length −0.517 1.38 × 10⁻⁶⁹ 1.57 × 10⁻⁸³ 

Explanation 
Phrases Structured Indicators −0.264 2.22 × 10⁻¹⁷ 8.51 × 10⁻⁹ 

Explanation 
Phrases Response Length 0.342 7.99 × 10⁻²⁹ 1.09 × 10⁻²⁶ 

 

 Our statistical analysis finds that calculations and explanation phrases are significantly 

anticorrelated with each other. Calculations positively align with structure indicators and 

negatively correlate with corrections, indicating that a calculations-heavy approach to reasoning 

results in a more logical chain of thought that is relatively error-free. Explanation phrases, 

however, negatively correlate with structure indicators and positively align with response length, 

suggesting that the explanation-heavy reasoning approach is more verbose and possibly less 

organized. 

 Importantly, by testing calculations against explanation phrases, we prove that reasoning 

is either calculations-heavy or explanations-heavy, and not both. In other words, we isolate two 

distinct reasoning modalities. Calculation-heavy traces tend to be short, structured, and error-

free, whereas verbose traces are longer and dominated by explanatory scaffolding. 

 

3.5.2 Mechanistic Identification 

 Our modality hypothesis holds true when tested mechanistically, and we identify certain 

features that track directly with one reasoning style over the other. We identify F59098 on the 

GSM8K dataset, and run a Pearson’s correlation test as shown below in Figure 11. We find a 

statistically significant positive correlation between F59098 activations and calculations, and a 

statistically significant negative correlation between activation and explanation phrases. In other 
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words, we find that F59098 is a calculative-reasoning feature that prefers the computation 

modality and discourages verbose explanation. 

 
Figure 11: Correlation of Feature 59098 GSM8K activations with calculation and explanation phrase metrics. 

Figure created by student researcher using Python in 2025. 

 Interestingly, in harder settings new domain-specific reasoning modalities emerge. 

Observing the same Feature 59098 in the advanced Olympiads data, we observe that it maintains 

a slight pattern, but is not statistically significant as shown in Figure 12 below. The discrepancy 

between the grade-school and competition-math dataset indicates that F59908 is not conducive to 

advanced reasoning and only basic reasoning. We therefore isolate F59098 to a feature 

controlling calculative reasoning on lower difficulty problems. 

 

 
Figure 12: Correlation of Feature 59098 activation with calculative and explanatory reasoning on both GSM8K and 

Olympiad datasets. Figure created by student researcher using Python in 2025. 
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However, we still prove the existence of reasoning modality control features in the 

Olympiad dataset. Similar to how the dataset difficulty increase saw feature fracturing into 

specialized domains, we identify features that fracture into domain-specific modality controllers. 

We identify F35875, whose domain activations are shown below in Figure 13.  

 
Figure 13: Domain distribution of top activations for Feature 35875. Figure created by student researcher using Python in 2025. 

By analyzing Feature 35875’s activations over domains, we identify it as an advanced 

geometry specialist. Through auto-interpretation as described in Section 2.3, we further classify 

F35875’s specialization as “spatial geometry” with high activation on pyramid reasoning 

problems. Applying a similar statistical test for correlation as with F59098 in the geometry 

domain, we find that F35875 displays a statistically significant preference for the calculation-

heavy reasoning modality over the verbose explanation modality within geometry, as shown 

below in Figure 14. 

 
Figure 14: Correlation of Feature 35875 Olympiad geometry activations with calculation and explanation phrase 

metrics. Figure created by student researcher using Python in 2025. 
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 The mechanistic identification of reasoning features and their statistical testing confirms 

our results from the correlation matrix from Figure 10. We find significant and clear evidence 

that LLM reasoning does not operate along a single dimension but instead splits into distinct 

modalities: a concise, calculation-driven style and a verbose, explanation-heavy style. Through 

correlation analysis of reasoning-quality metrics, we showed that these modalities are 

statistically opposed, with calculation-heavy traces being shorter and more structured, while 

explanation-heavy traces favor length and elaboration at the cost of organization. Crucially, our 

mechanistic analysis confirmed that specific features act as both generic and domain-specific 

modality controllers, selectively aligning with one reasoning style over the other. These findings 

provide the first mechanistic evidence that reasoning modalities are encoded within internal 

model features, proving that modality is not just an artifact of surface-level output but a 

structured and differentiable property of the model’s internal representations. 

 

4 Conclusion 

4.1 Summary of Findings 

This study develops a framework for mechanistic reasoning assurance by linking the 

internal representations of a large language model to quantifiable properties of reasoning quality. 

By combining sparse autoencoder (SAE) analysis with custom reasoning-quality metrics, we 

connect LLM internal feature activation structure with external behavioral evidence, providing a 

concrete basis for verifying whether reasoning occurs authentically inside the model rather than 

only in its text output. 

We introduce task difficulty as a novel mechanistic variable. Using matched reasoning 

datasets of contrasting complexity (GSM8K and Olympiad Mathematics) under an identical 

model and SAE configuration, we show that features which appear generic on simpler problems 

fracture into domain-specific sub-features as cognitive load increases. This establishes difficulty 

as a controlled axis for probing the stability and specialization of reasoning features. 

We provide the first mechanistic evidence of reasoning modalities within an LLM. We 

identify respectively a concise, calculation-driven modality and a verbose explanation-oriented 

modality. Each is governed by identifiable features whose activations predict the corresponding 

style of reasoning, demonstrating that reasoning strategy itself is encoded within latent space. 

The integration of mechanistic interpretability with reasoning evaluation is a large step 

forward in quantitative LLM reasoning assurance. Correlations between specific interpretable 
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features and reasoning-quality metrics demonstrate that internal activations carry information 

about inference. Causal intervention experiments demonstrate that individual features actively 

control specific reasoning behaviors, establishing that reasoning is mechanistically governed by 

interpretable internal features. Holistically, we establish through both correlational and causal 

evidence that reasoning behavior in LLMs is mechanistically structured, difficulty-dependent, 

internally modular, and controllable through feature-level interventions. We establish a 

reproducible foundation for assessing not only whether a model reaches correct conclusions, but 

whether it reasons in a verifiable and intelligible way. 

 

4.2 Implications 

Large language models increasingly participate in domains that depend on sound 

reasoning: education, research, policy, and scientific communication. Despite this, their internal 

validity remains opaque. This study demonstrates that reasoning reliability can be examined 

mechanistically rather than inferred behaviorally. Mechanistic reasoning assurance transforms 

reasoning trustworthiness from an observed property into a verifiable one. This shift enables 

auditing of reasoning itself, not merely of outcomes. 

For emerging AI governance frameworks, mechanistic verification of reasoning 

addresses a critical gap in current regulatory proposals. Standards requiring “explainable AI” 

typically focus on post-hoc output interpretations, which can be fabricated or misleading. 

Internal feature monitoring provides ground-truth verification: we can check whether claimed 

reasoning actually occurred inside the model. Our experiments demonstrate that these features 

are functional components that actively control reasoning outputs, enabling not just monitoring 

but potential intervention and correction of reasoning failures in deployed systems. This 

capability is essential for contexts where AI systems must demonstrate not just correct 

conclusions but legitimate inference processes, such as credit decisions, hiring algorithms, or 

medical recommendations. 

The broader implication is that reasoning itself becomes an engineerable and auditable 

property of AI systems. Rather than treating reasoning as an emergent capability we can only 

measure indirectly, mechanistic interpretability enables direct observation and validation. As 

reasoning models become more capable and more widely deployed, the ability to verify 

reasoning integrity mechanistically will be essential for maintaining justified trust in AI systems 

that increasingly shape consequential human decisions. 
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4.3 Limitations and Future Work 

This study examines a single model under controlled conditions. All findings are derived 

from DeepSeek-R1 Distill Llama-8B at a specific layer (block 19) using one SAE configuration. 

While this design ensures internal consistency, it limits direct generalizability to other LLMs. 

Although DeepSeek is representative of other models, we cannot conclude that these patterns 

exist in GPT-4, Claude, or Gemini. However, the mechanistic approach itself is architecture-

independent and transfers to other transformer-based models. 

Our findings are validated within arithmetic, algebra, geometry, and competition 

mathematics. While the feature specialization and modality distinction patterns we observe are 

likely general properties of how LLM features organize complex reasoning under difficulty, 

empirical validation in other reasoning domains is necessary. Causal reasoning, moral judgment, 

and probabilistic inference may engage different cognitive structures, and whether similar 

domain specialization emerges in those contexts remains an open empirical question. However, 

our central finding that reasoning features specialize under increased complexity is consistent 

with prior work on both feature interpretation and human cognitive specialization. 

Future work should focus on testing the methodology introduced in this study across 

various LLM families. Applying this methodology to Claude, GPT-4o, Gemini, and open-source 

reasoning models such as the recently released GPT-OSS would test whether domain 

specialization and modality splitting are universal properties of reasoning-optimized LLMs or 

artifacts specific to DeepSeek's architecture and training. We predict these patterns will replicate 

across models given shared transformer foundations and similar reasoning optimization 

objectives, but further work is necessary. 

Domain generalization to non-mathematical reasoning would test whether our framework 

is truly generic. The reasoning-quality metrics introduced here can be adapted to capture 

structure in causal chains, and analogical thinking. If similar specialization patterns emerge, such 

as features distinguishing deontological from utilitarian moral reasoning, this would support the 

hypothesis that complexity-driven specialization is a general principle of LLM cognition rather 

than a mathematical artifact.  

If cross-model and cross-domain validation succeeds, this framework could mature into a 

standardized benchmark for reasoning assurance, enabling evaluation of AI systems not only by 

their conclusions but by the verifiable integrity of their internal reasoning processes.  
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