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Abstract

Large language models (LLMs) are increasingly trusted in domains such as education,
research, and decision making. Despite their widespread adoption, fundamental questions remain
about alignment and logic in LLM reasoning. This assurance gap poses significant risks in high-
stakes domains where reasoning integrity is critical. This study develops a mechanistic
framework for reasoning verification by examining internal model computations rather than
relying solely on behavioral outputs. We analyzed DeepSeek-R1 Distill Llama-8B latent feature
activations across 2,000 mathematical problems of varying difficulty and domain. Employing
Sparse Autoencoders for feature extraction, we identify specific internal features directly tied to
reasoning behavior. We develop six novel metrics to quantify reasoning quality by logical
structure, self-corrections, and coherence. Through correlation and causal intervention analysis
across difficulty levels, we demonstrate that general reasoning features fracture into domain-
specific specialists under increased task complexity. Experimental manipulation of identified
features produces significant causal effects on reasoning behavior, establishing that internal
features functionally control specific aspects of reasoning quality. At higher mathematical
difficulties, domain-experts emerge for geometry, number theory, and other mathematical
subdomains. Additionally, we demonstrate the existence of distinct feature-governed reasoning
modalities: a concise calculation-oriented mode and a verbose explanation-oriented mode We
establish that LLM reasoning is predictable by its internal feature structure, which is difficulty-
dependent and domain-specialized. This framework enables assurance of reasoning models
based on legitimate internal monitoring, rather than output correctness alone, with implications

for all reasoning-enabled Al applications.



1 Introduction
1.1 Justification

Large language models (LLMs) have become central to the modern landscape of artificial
intelligence [1]. Their capacity to generate detailed solutions and solve problems has already
transformed how students learn, how researchers work, and how organizations make decisions.
Models such as GPT, Claude, and DeepSeek are now used in tutoring platforms, data analysis
systems, and technical support workflows [2]. Increasingly, these systems are being deployed as
reasoning engines: tools expected not only to provide answers but also to justify them [3].

Reasoning, however, is the least transparent and most fragile capability of LLMs [4].
While they can generate chain-of-thought explanations, these traces do not necessarily reflect
authentic internal processes [5]. In many cases, LLMs even fabricate reasoning steps that appear
plausible but are not indicative of the computations used in producing the answer [6] [7]. They
may disregard instructions to include or exclude reasoning, generating rationales inconsistently.
When optimized to please human evaluators, they may output “reasoning-like” text because it
maximizes reward, not because it corresponds to actual inference [8] [9]. These behaviors reveal
a deep problem: correct answers and even coherent explanations do not guarantee trustworthy
reasoning [10] [11]. Reasoning thus cannot be understood from a single benchmark alone [12].
Easier datasets may make reasoning appear generic, while more challenging datasets reveal
whether reasoning features hold or fracture.

The risks of this disconnect are substantial. In education, learners may adopt fabricated
reasoning as valid [13]. In science and engineering, spurious justifications may obscure flawed
conclusions. In policy, reasoning traces shaped to persuade rather than to reason may introduce
systematic bias [14]. As LLMs become integrated into high-stakes domains, trust cannot rest
solely on correctness of outputs [15]. Assurance requires evidence that genuine reasoning
processes are occurring inside the model [16].

This study aims to provide such evidence. I develop a methodology to move beyond
binary correctness to examine mechanistic reasoning assurance. By analyzing the internal
representations of a reasoning-optimized LLM, I examine whether reasoning features can be
isolated, characterized, and connected to reasoning quality. I further compare LLM activations
and feature interpretations across datasets of increasing difficulty and identify reasoning feature

subdomain specialization.



1.2 Mechanistic Interpretability

Each recent frontier model release has focused on optimizing LLM performance on
specific performance benchmarks. While these models represent significant progress, little work
has been done in developing interpretability techniques. Recent advancements in the field of
mechanistic interpretability have begun to make it possible to study the internal activations of
LLMs at a finer scale [17]. Sparse autoencoders (SAEs) have emerged as a promising tool for
this task [18] [19]. An SAE compresses the high-dimensional activations of a model layer into a
set of sparse features that each activate selectively on particular inputs. The sparsity constraint
encourages specialization: instead of every feature activating weakly all the time, many features
activate strongly only in specific contexts. This structure allows researchers to identify features
that align with recognizable concepts [20]. For instance, SAEs have been used to reveal features
that track when text is written in Python code, or that detect stylistic markers such as formality
[21]. In effect, SAEs allow researchers to investigate an LLM and identify recurring,
interpretable patterns in its activations. While prior work has focused on topical or stylistic

features, their potential to capture reasoning processes remains largely unexplored [22].

1.3 Reasoning Evaluation

While mechanistic interpretability has been applied to identify knowledge and style
features, reasoning has received far less attention. Reasoning involves multi-step inference,
abstract representations, and intermediate calculations. Whether such processes can be captured
as features in LLMs, and whether these features are shared across domains or specialized within
them, remains an open problem [22].

In parallel, evaluation of reasoning in LLMs has developed a different set of tools. The
existing GSMS8K benchmark, for instance, is a dataset that tests whether models can solve
reasoning-based problems at a grade-school difficulty [23]. Higher complexity datasets, such as
the Olympiad mathematics dataset, extend evaluation to more difficult questions via adding
domains of number theory, geometry, and combinatorics [24]. These benchmarks have become
central to measuring progress in reasoning ability. However, these benchmarks almost
exclusively measure correctness, or if the expected dataset answer exactly matches the LLM

output. They ask whether the model ultimately arrives at the right answer, with little regard to



intermediate reasoning steps. Even when chain-of-thought explanations are collected, there is
little effort on examining whether those explanations correspond to genuine internal processes. A
model can achieve high accuracy by recalling memorized patterns, exploiting superficial cues, or
fabricating plausible reasoning [10], none of which constitute true reasoning.

This focus on correctness leaves reasoning assurance underdeveloped. Knowing that a
model can answer a question correctly does not tell us how it reached that answer, nor whether
that same reasoning can generalize to a new question or domain. Assurance requires evidence
that identifiable reasoning processes do occur inside the model, and that these processes are
linked to reasoning quality.

Critically, most existing evaluations study models on a single benchmark. This practice
obscures an important dimension of reasoning: its sensitivity to problem difficulty. On GSM8K,
reasoning features may appear to generalize broadly. Yet when the same features are examined
on Olympiad problems, they may instead fail to reproduce reasoning and only demonstrate
pattern-matching capabilities. Alternatively, increasing difficulty can fracture features into
domain-specific patterns, potentially revealing modular structure invisible on simpler tasks [25].
Without contrasting behavior across difficulty levels, evaluations risk misclassifying features as
general when they are in fact specialized.

There is a need for more work at the intersection of interpretability and reasoning
evaluation. Interpretability demonstrates that topical features exist within LLMs, while
benchmarks demonstrate that reasoning behavior emerges. However, the validation of reasoning
via internal evidence remains missing.

This study addresses that gap by developing a methodology for mechanistic reasoning
assurance. | examine reasoning mechanisms within DeepSeek-R1 Distill Llama-8B, a
representative reasoning-optimized LLM. The approach uses sparse autoencoders and judge-
LLM domain classification to classify the roles and domains of extracted features. I introduce six
new reasoning-quality metrics designed to quantify the structure and reliability of model outputs
beyond correctness alone. This study applies the methodology across GSM8K and Olympiad
mathematics to test how reasoning features that appear generic on simpler problems fracture into
domain-specific patterns under complex tasks. Together, this methodology combines feature
extraction with automated interpretation, introduces new reasoning-quality metrics, and uses

dataset difficulty as an experimental variable to probe reasoning assurance mechanistically.



2 Methods
2.1 Data

In this study, the primary data consisted of two complementary sets of reasoning traces
generated with DeepSeek R1 Distill Llama-8B: 1,000 LLM responses to problems from grade-
school math and 1,000 responses to problems from advanced Olympiad mathematics. For each
problem and response instance, we captured LLM external and internal signals of reasoning. The
external layer included the model’s step-by-step reasoning output, final answer, and process
metadata such as response length, token counts, and formatting structure. The internal layer
consisted of residual stream activations, and a signature of the top 50 most active features for
that problem. Because the same LLM and autoencoder were used across both datasets, feature
identifiers indices are consistent, enabling direct cross-dataset comparison. Finally, every
reasoning trace was evaluated using six reasoning-quality metrics (detailed in Section 2.5),

providing a unified framework to analyze outputs, activations, and the impact of task difficulty.

2.1.1 Model Selection

This study examined the internal reasoning processes of a frontier reasoning-tuned large
language model (LLM). All experiments were conducted using DeepSeek R1 Distill Llama-8B, a
distilled variant of the DeepSeek R1 reasoning model built on the LLaMA-3.1-8B transformer
architecture. DeepSeek R1 Distill belongs to a recent class of reasoning-optimized LLMs, which

are trained specifically to output multi-step chain-of-thought style explanations.

The DeepSeek R1 family was developed with training on chain-of-thought data and
reinforcement learning objectives to encourage multi-step inference. The LLaMA-distilled
variant used in this study was produced via knowledge distillation, in which a student model is
trained to mimic the behavior of a larger teacher model. In this case, the teacher was DeepSeek
R1, and the student was optimized to capture reasoning traces, allowing reasoning ability itself to
be transferred during distillation. This property made DeepSeek R1 Distill particularly suitable
for an extended mechanistic study requiring thousands of forward passes. All model loading and

inference were conducted through the HuggingFace Transformers library.



Internally, LLaMA-family models follow the transformer architecture, in which each
block consists of attention and feedforward sublayers connected by a residual stream. The
residual stream can be understood as the model’s “running notebook™. At each block, it
accumulates contributions from prior layers and passes them forward. More formally, the
residual stream is the sum of the attention and multi-layer perceptron outputs at each block,
making it the locus for representational information that drives the model’s next steps. Hence,
sparse autoencoders focused on the residual stream can potentially recover features aligned with
human-interpretable concepts. Probing this stream offers direct access to the latents that the

model actively maintains for reasoning, before they are collapsed into logits for output.

In this study, activations were collected from the residual stream of block 19
(blocks.19.hook resid post), a mid-to-late layer out of Deepseek’s 32 layers. Early layers
primarily encode token-level embeddings, while final layers reflect surface-form outputs. By
contrast, mid-level residual streams contain semantically rich intermediate representations
thought to support reasoning. These activations were subsequently analyzed with a Sparse
Autoencoder (SAE) trained for this model family, yielding compressed, interpretable feature

vectors for each problem instance, discussed further in 2.2.

2.1.2 Dataset Selection

Two datasets of contrasting difficulty were used to probe reasoning features. The Grade-
School Math 8K dataset (GSMS8K) is a benchmark of arithmetic and word-based problems
designed for grade-school level reasoning [23]. Problems typically require a handful of explicit
steps and involve straightforward operations such as ratios, addition, subtraction, and basic
algebra. A subset of 1,000 problems was randomly sampled for analysis. The Olympiad
Mathematics (Olympiads) dataset is a subset of 1,000 competition-level problems drawn from
sources such as AMC, AIME, USAMO, and IMO archives [24]. These problems span advanced
algebra, number theory, geometry, and abstract math. Unlike GSM8K, Olympiad tasks often

demand symbolic manipulation, multiple layers of inference, or proof-oriented reasoning.

The use of these two datasets enabled a comparative difficulty design: GSM8K served as a
baseline where reasoning features may appear broad and generic, while Olympiad problems
acted as a stress test, revealing whether those same features fractured into specialized

subdomains under higher complexity.



2.1.3 Problem Domain Classification

As mentioned in section 2.1.2, I pull problems from two datasets of varying difficulties.
To investigate LLM reasoning feature specialization, it is critical to classify these problems into
their respective mathematical subdomains. We classify problems into one of five domains: basic
algebra/arithmetic, geometry, advanced algebra, number theory & combinatorics, and abstract
math/analysis. I use Llama 4 Maverick as a “judge” LLM and provide it with example problems
and a specialized prompt for classification of problems. The judge LLM is used to automatically

classify each problem into one of those subdomains, which is important for later analysis.

2.1.4 Reasoning Metrics

For each problem instance, the model was prompted to produce a step-by-step reasoning
trace along with its final answer. In addition to the output, we record the metadata of response
length, line breaks, formatting markers, and the feature activations. We record the indices of the
50 highest activating features on each problem, providing that they are above our minimum
activation threshold of 50. Feature indices are constant across all problems and datasets, as they
are unique to the Deepseek model itself. Thus, we can analyze feature performance across

problems and domains given their activation data.

Each response was further evaluated against a set of six reasoning-quality metrics: step
indicators, calculations, reasoning words, explanation phrases, corrections, and structured

indicators. Their formal definitions and implementations are described in Section 2.5.

2.2 Sparse Autoencoder Feature Extraction
2.2.1 Motivation for SAE

The internal states of a large language model are high-dimensional and densely
entangled, making them extremely difficult to interpret directly. In DeepSeek R1 Distill Llama-
8B, the residual stream at block 19 has 4,096 dimensions, yet the model must represent far more
distinct concepts than this dimensionality allows. As a result, many features are superposed:
multiple unrelated concepts overlap in the same neurons, and conversely, individual concepts are
spread across many neurons. Superposition is an efficient representational strategy, but it renders
raw activations nearly opaque, since no single value or direction corresponds cleanly to a

recognizable idea.



Sparse autoencoders (SAEs) are designed to address this problem. By training an
overcomplete dictionary of features and enforcing sparsity in the hidden layer, SAEs map dense
activations into a higher-dimensional space where only a small fraction of features fire at once.
This sparsity forces specialization, encouraging different features to encode distinct, consistent
patterns rather than overlapping mixtures. In other words, the autoencoder “untangles”
superposed signals, yielding features that can be studied as discrete representational units.

Empirical work has shown that SAE features often correspond to semantically
meaningful concepts, such as detecting when text is Python code, identifying stylistic formality,
or tracking arithmetic operators. This suggests that even abstract processes like reasoning may be
recoverable if they are encoded in a superposed form. For reasoning assurance, this capability is
critical: if reasoning structures exist in the residual stream but are hidden in tangled activations,

SAEs provide the tool to expose them as interpretable features.

2.2.2 Architecture of the SAE

A sparse autoencoder (SAE) is a neural network designed to map dense residual
activations into a higher-dimensional but sparse latent space, where only a small subset of
features fire for any given input. This architecture is motivated by the superposition hypothesis:
in a transformer residual stream, the number of features the model must represent greatly
exceeds the dimensionality of the hidden state, forcing many unrelated concepts to overlap in the
same neurons. SAEs address this by learning an overcomplete dictionary of features, combined

with sparsity constraints that encourage disentanglement.

Let x € R? denote a residual stream activation vector, with d = 4096 for block 19 in
DeepSeek R1 Distill Llama-8B. The encoder projects x into a higher-dimensional hidden vector
h € R* with k > d:

h=oc(W,x + b,)

where W, € R**% and b, € R¥ are encoder parameters, and ¢ is a rectified linear unit
(ReLU) to ensure nonnegative activations. The decoder reconstructs the input as: X = W;h + by,

with decoder parameters W, € RY*¥, b, € R%.



Further, the autoencoder is trained to minimize a reconstruction loss with an additional
sparsity penalty:
L= |x— %5+l

The L, term ensures that only a small subset of hidden units fire strongly for any given
input. In practice, some SAEs also use top-k sparsity, in which only the k largest hidden
activations are retained and the rest are zeroed out. Both approaches constrain overlap, reduce
interference, and push different features to specialize. This is the mechanism by which SAEs
“untangle” superposed signals into more monosemantic features.

Our SAE architecture, illustrated in Figure 1 below, expanded each 4,096-dimensional
activation into ~16,000 hidden units. Despite this larger space, sparsity meant that typically
fewer than 50 features fired per problem instance. This design combines a large dictionary of
possible features with only a few active features per input, making the resulting features both

expressive and interpretable.
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Figure 1: Sparse autoencoder workflow for mapping LLM activations into sparse features and reconstructing inputs.
Figure created by student researcher using React in 2025.

Each hidden unit corresponds to a feature direction in activation space: the encoder
weights W, [j] define when feature j fires, and the decoder weights W [:, j] describe how it
contributes back to reconstruction. A feature is considered interpretable if it activates
consistently in the presence of a coherent signal (e.g., addition operations, formal proof
language). Prior work shows that SAEs trained on LLM activations reliably recover such
monosemantic units.

For each problem instance in GSM8K and Olympiad datasets, residual activations at

block 19 were passed through the pretrained SAE. The top-50 most active features above a trivial



threshold were retained, along with their normalized activation magnitudes, forming a feature
signature of the model’s internal reasoning state. These signatures served as the basis for

automated interpretation and comparative analyses.

2.2.3 Hook Point Selection

This study probes activations from the residual stream at block 19 of DeepSeek R1 Distill
Llama-8B. The residual stream integrates contributions from both the attention and MLP
sublayers, preserving the cumulative state of computation. Block 19 was chosen out of a total of
32 because mid-to-late transformer layers have been shown to hold the richest internal
representations. Early layers are dominated by word identity and positional encoding, while the
very last layers are tuned to produce output tokens. By contrast, middle layers contain the
intermediate abstractions the model uses to carry out multi-step reasoning. Probing at block 19
therefore provides access to reasoning processes as they unfold, at a point where the computation

is neither too shallow nor already collapsed into final predictions.

2.2.4 SAE Configuration

We used a pretrained sparse autoencoder (SAE) distributed as deepseek-r1-distill-llama-
8b-qresearch via the sae_lens library and loaded it at the residual-stream hook point block 19.
We report the encoder matrix dimensionality W,,. € R¥*¢ from the SAE encoder weight matrix
at runtime with d = 4096.

For each problem instance, we extracted hidden states from layer index 19 and mean-
pooled across the sequence dimension to obtain a single residual vector per prompt before SAE
encoding. The resulting latent vector was sparse; we retain only the top-50 features per instance,
with activations below 0.01 discarded. The indices and magnitudes of these active features

constituted the feature signature used in all subsequent analyses.

2.2.5 Feature Example

To provide a concrete illustration of the type of units recovered by the sparse
autoencoder, we highlight Feature F25111, a feature that emerged consistently in the grade-
school GSM8K dataset. Figure 2 shows the proportion of GSM8K problems in each
mathematical domain where F25111 fired above the activation threshold of 0.01. The feature

was most active in geometry (44%), with substantial coverage in arithmetic (34%) and
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percentages/ratios (32%). It appeared less frequently in algebra (20%), and did not activate for
probability/statistics (0%).

Proportion of GSM8K Problems Activating Feature F25111

100

90
80
70
60

50 44.4%

Activation Rate (%)

Figure 2: Activations of Feature 25111 across GSM8K mathematical domains. Figure created by student researcher
using Python in 2025.

This distribution suggests that F25111 encodes a broad numerical reasoning signal that
generalizes across elementary mathematical tasks, with particularly strong alignment to
quantitative reasoning. The absence of F25111 activations in probability/statistics indicates that
this feature does not generalize across all forms of mathematical reasoning. Instead, it specializes
in deterministic, step-based computation and fails to respond when problems involve uncertainty
or distributional reasoning.

This example demonstrates interpretability insights gatherable from sparse features.
Discrete internal activations can be mapped to human-recognizable concepts. While F25111
appears to capture a generic quantitative reasoning process in GSMS8K, later analyses will
examine whether such features remain broad under Olympiad-level difficulty or fracture into

domain-specialized patterns.
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2.3 Automated Feature Interpretation

For each problem instance, the SAE outputs a set of indices corresponding to the most
active features and their associated activation magnitudes. However, while sparse features are
more coherent than their raw activations, they are not inherently self-describing. Each feature is
defined only by its activation pattern, leaving open the question of what reasoning behavior it
corresponds to. To address this, I develop an automated sparse feature interpretation pipeline
(auto-interpretation) using a judge language model, as illustrated in Figure 3. As each feature has
a unique identifier, it is possible to assemble a feature profile based on its activations across
many different queries. Given a large amount of feature activation records on various queries, we
can identify which queries correlate with activations of specific features. I use Llama 4 Maverick

as the judge LLM, with a customized prompt tuned for feature interpretation.

Data Collection

a1 Q2 Q3 Q4 Qs
r R’
. . Judge LLM Final
L] L] L] N
Llama 4 Maverick Interpretation
Sparse activations across diverse problems

Basic Quantitative
Reasoning
Feature 25111

= Top and zero activating problems .

+ Model responses and COT
Activation Sampling + Problem domain classifications

Inputs: ‘

Automated feature naming

Feature 25111 Pattern identification

Top 5 Activating 5 Zero-Activating

Top and zero activating problems

Figure 3: Automated feature interpretation via judge LLM. Figure created by student researcher using React in
2025.

To interpret a particular feature, we first isolate within the dataset the top 5 problems that
caused the highest activations of that feature, along with the 5 zero-activating problems. The
judge is given the text of the query, the response, the feature activations, as well as the problem
classification as outlined in section 2.1.3. The judge model is instructed to identify patterns

between activations and docs, and the final resulting interpretation is saved.

2.4 Reasoning Output Generation

Reasoning traces were generated by prompting DeepSeek R1 with natural language
questions from each dataset. For GSMS8K, 1,000 problems were randomly sampled from both the
training and test splits of the openai/gsm8k benchmark. For Olympiad mathematics, 1,000
problems were sampled from the aslawliet/olympiads dataset, which aggregates from the AMC,
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AIME, and IMO archives. Each problem was transformed into a standardized prompt of the
form:
Question: < problem text >

Answer:

The model was then allowed to autoregressively generate a continuation under
constrained sampling. For GSM8K, generation was capped at 300 new tokens to match the short
length of arithmetic reasoning traces. After finding token cutoffs during testing, the cap was
increased to 500 new tokens for Olympiad problems which allow for extended proof-like
arguments and longer symbolic derivations. A temperature of 0.3 was used to reduce stochastic
variation while preserving the diversity inherent to reasoning.

For each generation, we systemically log as metadata the raw response text, response
length, and context length alongside metrics such as generation time and length. We classify
each generation into their mathematical subdomain. For both datasets, six core metrics were
extracted: step indicators, calculations, reasoning words, explanation phrases, corrections, and
structural markers (Section 2.5). For Olympiad data, five further proof-oriented metrics were
applied, including proof language, logical connectives, mathematical formalism, case analysis,
and generalization attempts.

To account for potential failure cases, each problem was also scored on five complexity
dimensions by an auxiliary LLM-judge (computational load, reasoning steps, conceptual
abstraction, setup complexity, and mathematical domain). Where API failures or parsing errors
occurred, a rule-based fallback computed these scores directly from problem text. Fallback usage

was logged per instance to maintain dataset integrity.

2.5 Reasoning Quality Metrics

Traditional reasoning benchmarks evaluate models almost exclusively on correctness:
whether the final answer matches the ground truth. While useful, this metric alone cannot
distinguish between reliable reasoning and spurious success. A model may guess correctly, recall
a memorized template, or fabricate a plausible chain-of-thought without engaging in reasoning.
To probe reasoning assurance, this study introduced a set of six reasoning-quality metrics,
illustrated in Table 1, that quantify the structure and reliability of reasoning traces independent of

correctness.
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Table 1: Custom reasoning quality metrics and significance. Table created by student researcher in 2025.

Metric Definition Example Significance
.. “first”, “second” .
. Transitional phrases that e v Indicates structured
Step Indicators mark reasoning progression third”, *next”, thinkin
g p g “then”’ 5Cﬁnally” g
Mathematical operation R Direct measure of
Calculations symbols and computational | “ x 7 “ =~ “*> | quantitative reasoning
indicators “/” and computation

Reasoning Words

Logical connectors
establishing causal
relationships

99 ¢ 2

“therefore”, “so”,

“thus”, “because”,
“since”, “hence”,

“consequently”

Explicit logical
reasoning and
argument construction

Explanation Phrases

Expressions showing
deliberate problem-solving

“let me”, “we need
to”, “to find”, “to
calculate”, “to

solve”, “let’s”

Shows deliberate
planning of solution
steps

Self-identified errors and

“wait”, “actually”,

“correction”,

Demonstrates error

Corrections : .. .. v detection and self-
reasoning revisions mistake”, .
« v correction
wrong
. Decomposition for
Structured Organizational markers for | “1.”, “2.”, “3.”, com lef( multioste
Indicators systematic breakdown “_ p p

reasoning

These six metrics together provide a structured framework for evaluating reasoning

quality. By capturing different signals for organization, computation, logical coherence,

planning, and self-correction, they allow reasoning traces to be quantified along multiple

dimensions rather than treated as binary success or failure. Importantly, each metric isolates a

distinct facet of reasoning behavior. We will employ these custom metrics to great effect in later

analysis sections.

We apply these custom metrics to a sample GSM8K problem, shown below in Figure 4.

The problem involves counting the number of animal legs on a farm. The model’s response

includes multiple reasoning behaviors: arithmetic calculations (“10 * 2 = 20”), logical

connectives (“so”, “then”,

b1

therefore”), and corrections (“wait, let me think again’). On this

question, we detect 2 step indicators, 26 calculations, 25 reasoning words, and 3 explanation

phrases, alongside other markers. These statistics provide a process-level fingerprint of the actual

reasoning trace.
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A farm has 10 2-legged animals and 15 4- Sample LLM Output

10%2 + 15%4 = 20 + 60 = Bolegs. So, 8o legs mean 40 pairs.

legged animals. If all animals are healthy, how W, butth questio s about pairs of anonallgs, ot pairsof animas. S, each aninl as 2
ma ny pa irs of ani mal |egs ‘I n total a re On the legs, %c e.a(h animal tomnbu‘!cs 1 palr.‘ So , total J\umbef‘ ofraninm ‘mirs is10 + 15 = 25. But the
question is about legs, s0 10% 2 + 15% 4 = Bo legs, which is 40 pairs.
farm? Wait, so the answer is 40 pairs of legs
But the initial thought was 25 pairs of animals, but the question is about legs, so it's 40.
2 25 25 S0, the correct answer is 40.

But wait, let me think again. If the question is about pairs of animal legs, that is, how many pairs of

Step Indicators Caculations Reasoning Words
legs are there in total. So, each animal has 2 legs, so each animal contributes one pair. So, 10
animals contribute 10 pairs, and 15 animals contribute 15 pairs, so total is 25 pairs. But wait , no,
3 5 4 because the legs are being paired, so each pair is two legs. So, 10 animals have 20 legs, which is 10
Erplomtion P e e T — pairs, and 15 animals have 60 legs, which is 30 pairs. So, total legs are 80, which is 40 pairs.
Wait, so the confusion is whether the question is asking for pairs of animals or pairs of legs. Ifit's
pairs of animals, then each animal is one pair, so 25. Ifit's pairs of legs, then each pair is two legs,
14 327 s0 80 legs is 40 pairs.
T ey S0, the question says "pairs of animal legs”, so it's 40.
Therefore , the answer is 40.
But let me make sure. Let's break it down:
= 10 2 = legged animals: each has 2 legs, so 10 * 2 = 20 legs. Number of pairs from these animals:
B step Indicators (step, then, next, finally) Mathematical Operations (=, +, -, *, /) 20legs [ 2 [ 10 paire.
= 15 4 - legged animals: each has 4 legs, 50 15 * 4 = 60 legs. Number of pairs from these animals: 60
B Reasoning Words (so, therefore, because) B Explanation Phrases (let me, let's) B Eortn
Total pairs of legs: 10 + 30 = 40.
B self-Corrections (wait, actually, mistake) B Structured Elements (1,, 2, =, -) Yes, that's correct.

80, the answer is 40.

Figure 4: Example application of reasoning-quality metrics to LLM reasoning trace. Figure created by student
researcher using React in 2025.

By quantifying these features, reasoning quality can be studied as a continuous variable
rather than a binary success/failure. For example, a response that reaches the wrong final answer
but demonstrates 20 calculations and consistent step indicators still is reflective of genuine
reasoning, whereas a correct answer with no intermediate markers may indicate pattern-matching

or guessing.

2.6 Comparative Difficulties

A key objective of this study was to examine how reasoning features behave as task
complexity increases. GSMS8K problems require only a few arithmetic or algebraic steps,
providing a baseline where reasoning features may appear broad and generic. Olympiad tasks, by
contrast, demand extended symbolic reasoning and domain-specific skills such as geometry,
combinatorics, or number theory, creating a natural stress test for reasoning under complexity.
Both datasets were processed through the same pipeline, using identical prompting, inference,
feature extraction, and reasoning-quality metrics. This design ensured that any observed
differences could be attributed to difficulty and domain rather than inconsistencies in generation

or analysis.
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3 Results and Discussion
3.1 Extracted Feature Distributions

By comparing GSM8K and Olympiad instances, we observe distinct patterns that reflect
the complexity of reasoning engaged. On GSMS8K, the number of active features per problem is
consistently low. Most problems triggered only a handful of features, with a median in the single
digits. The distribution is tightly concentrated, as shown in Figure 5, indicating that elementary
problems are solved with relatively broad and generic reasoning representations. This suggests
that the model can reuse a small set of internal features across many simpler tasks without

requiring deep specialization.

Boxplot of Activated Features per Problem
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Figure 5A: Boxplot of activated features per problem. Figure 5B: Distribution of activated features per problem

Figure 5: Comparisons of activated features per problem between datasets. Figure created by student researcher
using Python in 2025.

By contrast, Olympiad problems produce a much denser activation landscape. The
histogram shows a pronounced shift toward larger numbers of features. During data collection,
we cap recorded features at the top 50 highest-activating features. We see that the Olympiad
queries nontrivially fire 50+ features above the activation threshold a significant portion of the
time. The boxplot comparison in Figure 5 highlights this contrast: Olympiad problems exhibit a
higher median, a broader interquartile range, and a longer upper tail.

These patterns suggest that problem complexity directly influences the internal feature
budget. Easier tasks can be handled with catch-all generic reasoning features, whereas complex
Olympiad-level tasks demand richer and more specialized activation signatures. This evidence
aligns with the hypothesis that reasoning under difficulty is not just longer or noisier, but

structurally different in how it engages the model’s internal representational space.
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3.2 Reasoning Feature Testing

For all subsequent results, the central focus is on features that genuinely capture
reasoning rather than incidental patterns. Although the dataset was curated to emphasize
reasoning, the top 50 activating features recorded per problem inevitably include units that
respond to superficial cues such as formatting or domain-specific vocabulary. Distinguishing
these from features that drive structured inference is therefore critical. To make this separation, I
systematically test the correlation between feature activations and the reasoning-quality metrics.

For an example test, recall Feature F25111 which was auto-interpreted in Section 2.3 as a
“basic quantitative reasoning” feature. However, to rigorously evaluate F25111’s influence on
reasoning, I statistically test the relationship of F25111°s activation levels in the GSM8K dataset
on the step indicator metric as described earlier. Because both variables are continuous, a
Pearson correlation test is employed to assess the linear association between feature activation

and reasoning quality.

Neural Feature Predicts Reasoning Quality
r=0.472, p = 0.020%*
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Figure 6: Correlation between Feature 25111 activation and reasoning quality on GSM8K. Figure created by
student researcher using Python in 2025.

We correlate F25111°s activation magnitude with the step-indicator metric. The result,

shown above in Figure 6, reveals a statistically significant relationship that higher activation of
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F25111 predicts greater reasoning. Strong activations of F25111 displayed a 1.9x increase in
reasoning steps relative to low-activation cases, with a significant p-value of 0.02.

Importantly, this analysis includes zero-activating examples where the feature did not fire
at all, indicated by the points with x-coordinate value of zero in the same Figure 6. Excluding
them would bias the sample toward successful activations and thus inflate the correlation. By
retaining zero-activation data points, we confirm that reasoning quality systematically differs
between problems that engage the feature versus those that do not. This strengthens the
interpretation that F25111 acts as a genuine feature of structured reasoning. This establishes a
foundation for examining whether such reasoning features remain stable across domains, or
fracture under higher levels of difficulty.

To test whether feature-reasoning correlations reflect causal relationships, we performed
activation interventions on Feature 25111. We systematically manipulated Feature 25111 across
three conditions: natural (baseline), suppressed (activation=0.0), and enhanced (activation=2.0).
Intervention results shown below in Figure 7 revealed a significant relationship with correction
phrases, the number of times the LLM revisited and revised its own reasoning.

Feature 25111 Activation Intervention Results

p < 0.001%+*

Mean Correction Phrases

Suppressed Natural Enhanced
Intervention Condition

Figure 7: Feature 25111 activation intervention results. Figure created by student researcher using React in 2025.

Under the suppressed condition, when F25111 was silenced, the model produced a mean
of only 1.24 corrections per problem. The natural baseline condition yielded 1.84 corrections,
representing a 48% increase. Most strikingly, the enhanced condition elicited 4.90 corrections

per problem, a 166% increase over baseline and a nearly fourfold increase over suppression.
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A one-way ANOVA confirmed these differences were highly statistically significant with
F(2, 147)=172.18, p < 0.001. The effect size was substantial, with n> = 0.495, indicating that the
experimental manipulation of F25111 explained 49.5% of the variance in self-correction
behavior. This large effect size demonstrates that F25111 is not merely correlated with reasoning
quality but causally drives the model's tendency to monitor and correct its reasoning.

These findings provide strong mechanistic evidence that F25111 functions as an internal
reasoning controller. When suppressed, the model generates answers with minimal self-
evaluation. When enhanced, it engages in significantly more metacognitive behavior, repeatedly
checking and revising its reasoning chain. This pattern aligns with the feature's interpretation as a
quantitative reasoning unit: problems requiring numerical inference benefit from iterative
verification, and amplifying F25111 intensifies this self-monitoring process.

Critically, this intervention confirms that the correlations observed earlier reflect genuine
causal structure. We establish that sparse autoencoder features are not merely descriptive but

functionally operative components of the model's reasoning machinery.

3.3 Subject Matter Expert Features

We next examine whether certain features specialize in distinct mathematical
subdomains. To do so, we grouped Olympiad problems by domain (basic algebra, geometry,
advanced algebra, number theory, abstract mathematics) as described in Section 2.1.3, and
measured average feature activation within each domain subset of problems. This approach
enables the identification of subject matter expert (SME) features that consistently activate more

strongly in one domain relative to others.

Feature Basic Algebra  Geometry  Advanced Algebra Number Theory  Abstract Math Specializes In

Figure 8: Specialization of selected features across mathematical subdomains in Olympiad dataset. Figure created
by student researcher using React in 2025.
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We examine several features of interest, whose domain-specific activations are illustrated
in Figure 8. Higher activations in a category are red, and each feature’s highest specializing
category is boxed. For instance, F25111 highly activates for basic algebra questions, aligning
with its earlier interpretation as a quantitative reasoning feature for basic arithmetic. It
demonstrates a 6.5x higher activation in the basic algebra domain compared to other domains.
Similarly, F53164 and F8690 consistently specialize in geometry, both activating 5x more than
other domains. In contrast, F14998 and F44576 show selectivity for number theory.

To rigorously assess whether the observed domain-specific activation patterns were
statistically meaningful, we applied a one-way analysis of variance (ANOVA) and the non-
parametric Kruskal-Wallis test. The ANOVA evaluates whether mean activation levels differ
significantly across the five mathematical domains, under the assumption of approximate
normality, while the Kruskal-Wallis test relaxes these assumptions by comparing ranked
distributions. Employing both tests ensures robustness, as feature activations are sparse and often
skewed. Importantly, zero-activation cases were retained in each group to reflect the full
activation profile of a feature, since absence of firing is as informative for specialization as
consistent activation.

The results presented in Table 2 provide clear evidence of subdomain selectivity for
several features. Feature 8690 exhibited the strongest statistical evidence of specialization.
F14998 and F44576 also displayed significant specialization with number theory. F25111
showed weaker dependence, reaching significance under the Kruskal-Wallis test but not under
ANOVA, consistent with its role as a broad quantitative reasoning marker rather than a sharply
localized expert feature. By contrast, F53164 and F2308 did not exhibit statistically significant
differences across domains (p > 0.05).

Table 2: Significance testing of feature domain specialization. Table created by student researcher in 2025.

Feature Domain Specialty ANOVA p-value  Kruskal-Wallis p-value
25111 Basic Algebra 0.117 0.031 *
53164 Geometry 0.287 0.281
8690 Geometry 0.0018 * <0.0001 *
14998 Number Theory 0.011 * 0.004 *
44576 Number Theory 0.048 * 0.044 *
2308 Geometry 0.395 0.502
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These findings carry several important implications. First, they provide rigorous
confirmation that reasoning features are not uniformly distributed across tasks, but instead
cluster into domain-specialized units under mathematical reasoning. This establishes mechanistic
evidence for a form of modularity: certain internal features act analogously to human subject
matter experts, activating selectively when problems fall within their area of competence.

Second, the mixture of significant and non-significant results indicates that the feature
space is heterogeneous, containing both general features that operate broadly across problem
types and also specialist features that fire predominantly within a single domain. This dual
structure suggests that large language models do not rely solely on generic reasoning heuristics,
nor do they fully compartmentalize reasoning into isolated silos. Instead, they appear to combine
transferable reasoning markers with SME-like components, producing a hybrid representational
strategy.

Finally, the emergence of SME features under Olympiad-level tasks supports the claim
that increasing difficulty drives representational reorganization. Whereas GSM8K problems were
handled with a relatively small set of generic reasoning features, complex Olympiad problems

elicited specialized circuits that fractured along mathematical subdomains.

3.4 Generic Math Feature

Previously, features were identified that specialize in distinct mathematical subdomains,
consistent with the hypothesis of subject matter expert (SME) units. However, not all features
fall neatly into this pattern. Some appear to serve a broader role, activating robustly across
multiple domains.

We initially suspected that Feature 25111 was such a “generic math” feature, as it
consistently appeared in GSM8K and displayed strong correlations with step-indicator reasoning
metrics. Yet, closer analysis revealed that its activations are disproportionately concentrated in
basic algebra, and statistical testing confirmed that it is better characterized as an elementary
quantitative reasoning unit rather than a truly domain-general feature. This finding demonstrates
that apparent generality at lower difficulty can collapse into specialization under Olympiad-level
reasoning.

By contrast, Feature 44576 emerges as a far stronger candidate for a genuinely general

mathematical feature. While earlier we identified its specialization in number theory, it maintains
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the highest activation magnitude across all domains, outperforming even domain-specific SME
features in their home categories as shown in Figure 9. For example, in geometry and advanced
algebra, Feature 44576 surpasses features specialized to those domains. F44576 is the highest

activating feature across all five domains of basic algebra, geometry, advanced algebra, number

theory, and abstract math.
Feature 44576 vs. Best SME Features by Domain

1.305

I Feature 44576
B Best SME Feature

Average Activation

Figure 9: F44576 activations compared to best domain SME features. Figure created by student researcher using
Python in 2025.

This pattern may be justified by the longstanding mathematical view that number theory
underpins much of mathematics. Mathematicians have maintained that many branches, from
algebraic structures to combinatorics and cryptography, ultimately reduce to number-theoretic
foundations [27]. If so, then a number-theory aligned feature like F44576 may naturally manifest

across diverse domains, serving as a structural generalist rather than a narrow SME.

3.5 Reasoning Modalities
3.5.1 Distinct Modalities

Psychologists and cognitive scientists have long identified unique reasoning modes for
humans such as analytical reasoning, moral reasoning, and probabilistic reasoning [28]. Prior

work has suggested that LLMs, having been trained on human data, may reason in a similar
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fashion [29]. I identify that LLM reasoning in the mathematical domain also occurs in two key

modalities: a verbose explanation-heavy teaching mode and a concise calculations-based

execution mode.

We first analyze the reasoning quality metrics as described in Section 2.5. We calculate

the Pearson correlation of all reasoning metrics over the 1,000 records (n=1000) of the GSM8K

data, as shown below in Figure 10.
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Figure 10: Reasoning metrics correlation matrix on GSM8K. Figure created by student researcher using Python in

2025.

We focus on the metrics of calculations and explanation phrases as our main

measurements of calculative versus verbose reasoning. Calculations quantify concise, step-based

computational work, whereas explanation phrases capture extended natural language exposition.

These represent opposing reasoning modes: compact stepwise computation versus extended

natural language elaboration. We quantify their impact on other selected metrics that measure

structure, and output verbosity, as shown below in Table 3.
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Table 3: Correlations between reasoning quality metrics. Table created by student researcher in 2025.

Metric 1 Metric 2 Pearson r Pearson p-value Spearman p-value
Calculations | Explanation Phrases —0.350 3.53 x 1073 2.80 x 107"
Calculations | Structure Indicators 0.706 7.18 x 10712 1.84 x 107
Calculations Corrections —0.341 1.09 x 10728 5.66 x 107
Calculations Response Length -0.517 1.38 x 10 1.57 x 107%
Exgéi:;ﬁson Structured Indicators ~0.264 222 % 10" 8.51 x 10
Explanation - p ) hse Length 0.342 7.99 x 102 1.09 x 10726

Phrases

Our statistical analysis finds that calculations and explanation phrases are significantly
anticorrelated with each other. Calculations positively align with structure indicators and
negatively correlate with corrections, indicating that a calculations-heavy approach to reasoning
results in a more logical chain of thought that is relatively error-free. Explanation phrases,
however, negatively correlate with structure indicators and positively align with response length,
suggesting that the explanation-heavy reasoning approach is more verbose and possibly less
organized.

Importantly, by testing calculations against explanation phrases, we prove that reasoning
is either calculations-heavy or explanations-heavy, and not both. In other words, we isolate two
distinct reasoning modalities. Calculation-heavy traces tend to be short, structured, and error-

free, whereas verbose traces are longer and dominated by explanatory scaffolding.

3.5.2 Mechanistic Identification

Our modality hypothesis holds true when tested mechanistically, and we identify certain
features that track directly with one reasoning style over the other. We identify F59098 on the
GSMSK dataset, and run a Pearson’s correlation test as shown below in Figure 11. We find a
statistically significant positive correlation between F59098 activations and calculations, and a

statistically significant negative correlation between activation and explanation phrases. In other
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words, we find that F59098 is a calculative-reasoning feature that prefers the computation
modality and discourages verbose explanation.
Feature 59098 Activations for Calculative vs Verbose Reasoning
A. Calculations Metric B. Explanation Phrases Metric
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Figure 11: Correlation of Feature 59098 GSM8K activations with calculation and explanation phrase metrics.
Figure created by student researcher using Python in 2025.

Interestingly, in harder settings new domain-specific reasoning modalities emerge.
Observing the same Feature 59098 in the advanced Olympiads data, we observe that it maintains
a slight pattern, but is not statistically significant as shown in Figure 12 below. The discrepancy
between the grade-school and competition-math dataset indicates that F59908 is not conducive to
advanced reasoning and only basic reasoning. We therefore isolate F59098 to a feature

controlling calculative reasoning on lower difficulty problems.

A. GSM8K B. Olympiads
17.5
calc: r=0.914 calc: r=0.288 & Calculations
15.0 Expl: r=-0.746 10 Expl: r=-0.132 ® Explanations
L]
o0 o] o

12.5
- ~ 8| ® @ ® S| E
= ] =
£ 10 @ I
= ® =]
o .5 @ Calculations O s
£ ' Explanations £
£ €
s 50 S 4
=] °©
w) w)

2.5

o 2
0.0 e @ @ @
0 o o]
-2.5
0.1 0.2 0.3 0.4 0.5 0.6 0.05 0.10 0.15 0.20 0.25
Feature 59098 Activation Feature 59098 Activation

Figure 12: Correlation of Feature 59098 activation with calculative and explanatory reasoning on both GSM8K and
Olympiad datasets. Figure created by student researcher using Python in 2025.
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However, we still prove the existence of reasoning modality control features in the
Olympiad dataset. Similar to how the dataset difficulty increase saw feature fracturing into
specialized domains, we identify features that fracture into domain-specific modality controllers.

We identify F35875, whose domain activations are shown below in Figure 13.

Domain Specialization
(Top 15 activations)

Number Theory &
Combinatorics

Geometry

Figure 13: Domain distribution of top activations for Feature 35875. Figure created by student researcher using Python in 2025.

By analyzing Feature 35875’s activations over domains, we identify it as an advanced
geometry specialist. Through auto-interpretation as described in Section 2.3, we further classify
F35875’s specialization as “spatial geometry” with high activation on pyramid reasoning
problems. Applying a similar statistical test for correlation as with F59098 in the geometry
domain, we find that F35875 displays a statistically significant preference for the calculation-
heavy reasoning modality over the verbose explanation modality within geometry, as shown

below in Figure 14.
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Figure 14: Correlation of Feature 35875 Olympiad geometry activations with calculation and explanation phrase
metrics. Figure created by student researcher using Python in 2025.
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The mechanistic identification of reasoning features and their statistical testing confirms
our results from the correlation matrix from Figure 10. We find significant and clear evidence
that LLM reasoning does not operate along a single dimension but instead splits into distinct
modalities: a concise, calculation-driven style and a verbose, explanation-heavy style. Through
correlation analysis of reasoning-quality metrics, we showed that these modalities are
statistically opposed, with calculation-heavy traces being shorter and more structured, while
explanation-heavy traces favor length and elaboration at the cost of organization. Crucially, our
mechanistic analysis confirmed that specific features act as both generic and domain-specific
modality controllers, selectively aligning with one reasoning style over the other. These findings
provide the first mechanistic evidence that reasoning modalities are encoded within internal
model features, proving that modality is not just an artifact of surface-level output but a

structured and differentiable property of the model’s internal representations.

4 Conclusion
4.1 Summary of Findings

This study develops a framework for mechanistic reasoning assurance by linking the
internal representations of a large language model to quantifiable properties of reasoning quality.
By combining sparse autoencoder (SAE) analysis with custom reasoning-quality metrics, we
connect LLM internal feature activation structure with external behavioral evidence, providing a
concrete basis for verifying whether reasoning occurs authentically inside the model rather than
only in its text output.

We introduce task difficulty as a novel mechanistic variable. Using matched reasoning
datasets of contrasting complexity (GSM8K and Olympiad Mathematics) under an identical
model and SAE configuration, we show that features which appear generic on simpler problems
fracture into domain-specific sub-features as cognitive load increases. This establishes difficulty
as a controlled axis for probing the stability and specialization of reasoning features.

We provide the first mechanistic evidence of reasoning modalities within an LLM. We
identify respectively a concise, calculation-driven modality and a verbose explanation-oriented
modality. Each is governed by identifiable features whose activations predict the corresponding
style of reasoning, demonstrating that reasoning strategy itself is encoded within latent space.

The integration of mechanistic interpretability with reasoning evaluation is a large step

forward in quantitative LLM reasoning assurance. Correlations between specific interpretable
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features and reasoning-quality metrics demonstrate that internal activations carry information
about inference. Causal intervention experiments demonstrate that individual features actively
control specific reasoning behaviors, establishing that reasoning is mechanistically governed by
interpretable internal features. Holistically, we establish through both correlational and causal
evidence that reasoning behavior in LLMs is mechanistically structured, difficulty-dependent,
internally modular, and controllable through feature-level interventions. We establish a
reproducible foundation for assessing not only whether a model reaches correct conclusions, but

whether it reasons in a verifiable and intelligible way.

4.2 Implications

Large language models increasingly participate in domains that depend on sound
reasoning: education, research, policy, and scientific communication. Despite this, their internal
validity remains opaque. This study demonstrates that reasoning reliability can be examined
mechanistically rather than inferred behaviorally. Mechanistic reasoning assurance transforms
reasoning trustworthiness from an observed property into a verifiable one. This shift enables
auditing of reasoning itself, not merely of outcomes.

For emerging Al governance frameworks, mechanistic verification of reasoning
addresses a critical gap in current regulatory proposals. Standards requiring “explainable AI”
typically focus on post-hoc output interpretations, which can be fabricated or misleading.
Internal feature monitoring provides ground-truth verification: we can check whether claimed
reasoning actually occurred inside the model. Our experiments demonstrate that these features
are functional components that actively control reasoning outputs, enabling not just monitoring
but potential intervention and correction of reasoning failures in deployed systems. This
capability is essential for contexts where Al systems must demonstrate not just correct
conclusions but legitimate inference processes, such as credit decisions, hiring algorithms, or
medical recommendations.

The broader implication is that reasoning itself becomes an engineerable and auditable
property of Al systems. Rather than treating reasoning as an emergent capability we can only
measure indirectly, mechanistic interpretability enables direct observation and validation. As
reasoning models become more capable and more widely deployed, the ability to verify
reasoning integrity mechanistically will be essential for maintaining justified trust in Al systems

that increasingly shape consequential human decisions.
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4.3 Limitations and Future Work

This study examines a single model under controlled conditions. All findings are derived
from DeepSeek-R1 Distill Llama-8B at a specific layer (block 19) using one SAE configuration.
While this design ensures internal consistencys, it limits direct generalizability to other LLMs.
Although DeepSeek is representative of other models, we cannot conclude that these patterns
exist in GPT-4, Claude, or Gemini. However, the mechanistic approach itself is architecture-
independent and transfers to other transformer-based models.

Our findings are validated within arithmetic, algebra, geometry, and competition
mathematics. While the feature specialization and modality distinction patterns we observe are
likely general properties of how LLM features organize complex reasoning under difficulty,
empirical validation in other reasoning domains is necessary. Causal reasoning, moral judgment,
and probabilistic inference may engage different cognitive structures, and whether similar
domain specialization emerges in those contexts remains an open empirical question. However,
our central finding that reasoning features specialize under increased complexity is consistent
with prior work on both feature interpretation and human cognitive specialization.

Future work should focus on testing the methodology introduced in this study across
various LLM families. Applying this methodology to Claude, GPT-40, Gemini, and open-source
reasoning models such as the recently released GPT-OSS would test whether domain
specialization and modality splitting are universal properties of reasoning-optimized LLMs or
artifacts specific to DeepSeek's architecture and training. We predict these patterns will replicate
across models given shared transformer foundations and similar reasoning optimization
objectives, but further work is necessary.

Domain generalization to non-mathematical reasoning would test whether our framework
is truly generic. The reasoning-quality metrics introduced here can be adapted to capture
structure in causal chains, and analogical thinking. If similar specialization patterns emerge, such
as features distinguishing deontological from utilitarian moral reasoning, this would support the
hypothesis that complexity-driven specialization is a general principle of LLM cognition rather
than a mathematical artifact.

If cross-model and cross-domain validation succeeds, this framework could mature into a
standardized benchmark for reasoning assurance, enabling evaluation of Al systems not only by

their conclusions but by the verifiable integrity of their internal reasoning processes.

29



References

I.
2.

10.

11.

12.

Gokul, A. (2023). LLMs and Al: Understanding its reach and impact.

M. A. K. Raiaan et al., "A Review on Large Language Models: Architectures,
Applications, Taxonomies, Open Issues and Challenges," in IEEE Access, vol. 12, pp.
26839-26874, 2024, doi: 10.1109/ACCESS.2024.3365742.

Ke, Z., Jiao, F., Ming, Y., Nguyen, X. P., Xu, A., Long, D. X., ... & Joty, S. (2025). A
survey of frontiers in llm reasoning: Inference scaling, learning to reason, and agentic
systems. arXiv preprint arXiv:2504.09037.

Shojaee, P., Mirzadeh, 1., Alizadeh, K., Horton, M., Bengio, S., & Farajtabar, M. (2025).
The illusion of thinking: Understanding the strengths and limitations of reasoning models
via the lens of problem complexity. arXiv preprint arXiv:2506.06941.

Turpin, M., Michael, J., Perez, E., & Bowman, S. (2023). Language models don't always
say what they think: Unfaithful explanations in chain-of-thought prompting. Advances in
Neural Information Processing Systems, 36, 74952-74965.

Emmons, S., Jenner, E., Elson, D. K., Saurous, R. A., Rajamanoharan, S., Chen, H., ... &
Shah, R. (2025). When chain of thought is necessary, language models struggle to evade
monitors. arXiv preprint arXiv:2507.05246.

Lanham, T., Chen, A., Radhakrishnan, A., Steiner, B., Denison, C., Hernandez, D., ... &
Perez, E. (2023). Measuring faithfulness in chain-of-thought reasoning. arXiv preprint
arXiv:2307.13702.

Yu, T., Jing, Y., Zhang, X., Jiang, W., Wu, W., Wang, Y., ... & Tao, D. (2025).
Benchmarking reasoning robustness in large language models. arXiv preprint
arXiv:2503.04550.

Fu, J., Zhao, X., Yao, C., Wang, H., Han, Q., & Xiao, Y. (2025). Reward shaping to
mitigate reward hacking in rlhf. arXiv preprint arXiv:2502.18770.

Korbak, T., Balesni, M., Barnes, E., Bengio, Y., Benton, J., Bloom, J., ... & Mikulik, V.
(2025). Chain of thought monitorability: A new and fragile opportunity for ai

safety. arXiv preprint arXiv:2507.11473.

Yao, Z., Liu, Y., Chen, Y., Chen, J., Fang, J., Hou, L., ... & Chua, T. S. (2025). Are
Reasoning Models More Prone to Hallucination?. arXiv preprint arXiv:2505.23646.
Fodor, J. (2025). Line goes up? inherent limitations of benchmarks for evaluating large

language models. arXiv preprint arXiv:2502.14318.

30



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.
25.

Chu, Z., Wang, S., Xie, J., Zhu, T, Yan, Y., Ye, J., ... & Wen, Q. (2025). LIm agents for
education: Advances and applications. arXiv preprint arXiv:2503.11733.

Coz, P. L., Liu, J. A., Bhattacharjya, D., Curto, G., & Stinckwich, S. (2025). What Would
an LLM Do? Evaluating Policymaking Capabilities of Large Language Models. arXiv
preprint arXiv:2509.03827.

You, D., & Chon, D. (2024). Trust & Safety of LLMs and LLMs in Trust & Safety. arXiv
preprint arXiv:2412.02113.

Burns, C., Ye, H., Klein, D., & Steinhardt, J. (2022). Discovering latent knowledge in
language models without supervision. arXiv preprint arXiv:2212.03827.

Bereska, L., & Gavves, E. (2024). Mechanistic interpretability for Al safety--a

review. arXiv preprint arXiv:2404.14082.

Cunningham, H., Ewart, A., Riggs, L., Huben, R., & Sharkey, L. (2023). Sparse
autoencoders find highly interpretable features in language models. arXiv preprint
arXiv:2309.08600.

O'Neill, C., Ye, C., Iyer, K., & Wu, J. F. (2024). Disentangling dense embeddings with
sparse autoencoders. arXiv preprint arXiv:2408.00657.

Karvonen, A., Rager, C., Lin, J., Tigges, C., Bloom, J., Chanin, D., ... & Nanda, N.
(2025). Saebench: A comprehensive benchmark for sparse autoencoders in language
model interpretability. arXiv preprint arXiv:2503.09532.

Shu, D., Wu, X., Zhao, H., Rai, D., Yao, Z., Liu, N., & Du, M. (2025). A survey on
sparse autoencoders: Interpreting the internal mechanisms of large language

models. arXiv preprint arXiv:2503.05613.

Sharkey, L., Chughtai, B., Batson, J., Lindsey, J., Wu, J., Bushnagq, L., ... & McGrath, T.
(2025). Open problems in mechanistic interpretability. arXiv preprint arXiv:2501.16496.
Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert, M.,
Tworek, J., Hilton, J., Nakano, R., Hesse, C., & Schulman, J. (2021). Training verifiers to
solve math word problems (arXiv:2110.14168). arXiv. https://arxiv.org/abs/2110.14168.
Aslawliet. (n.d.). Olympiads Dataset. Hugging Face.

Chanin, D., Wilken-Smith, J., Dulka, T., Bhatnagar, H., Golechha, S., & Bloom, J.
(2024). A is for absorption: Studying feature splitting and absorption in sparse
autoencoders. arXiv preprint arXiv:2409.14507.

31



26. Elhage, N., Hume, T., Olsson, C., Schiefer, N., Henighan, T., Kravec, S., ... & Olah, C.

(2022). Toy models of superposition. arXiv preprint arXiv:2209.10652.

27. Wagner, M. (2012). Number theory and the queen of mathematics. The Mathematics
Enthusiast, 9(1), 193-206.

28. Strachan, J.W.A., Albergo, D., Borghini, G. et al. Testing theory of mind in large
language models and humans. Nat Hum Behav 8, 1285-1295 (2024).
https://doi.org/10.1038/s41562-024-01882-z.

29. Lupita Estefania Gazzo Castafieda, Benjamin Sklarek, Dennis E. Dal Mas, Markus

Knauff, Probabilistic and deductive reasoning in the human brain, Neurolmage, Volume

275, 2023, 120180, ISSN 1053-8119, https://doi.org/10.1016/j.neuroimage.2023.120180.

32



	Abstract
	1 Introduction
	1.1 Justification
	1.2 Mechanistic Interpretability
	1.3 Reasoning Evaluation

	2 Methods
	2.1 Data
	2.1.1 Model Selection
	2.1.2 Dataset Selection
	2.1.3 Problem Domain Classification
	2.1.4 Reasoning Metrics

	2.2 Sparse Autoencoder Feature Extraction
	2.2.1 Motivation for SAE
	2.2.2 Architecture of the SAE
	2.2.3 Hook Point Selection
	2.2.4 SAE Configuration
	2.2.5 Feature Example

	2.3 Automated Feature Interpretation
	2.4 Reasoning Output Generation
	2.5 Reasoning Quality Metrics
	2.6 Comparative Difficulties

	3 Results and Discussion
	3.1 Extracted Feature Distributions
	3.2 Reasoning Feature Testing
	3.3 Subject Matter Expert Features
	3.4 Generic Math Feature
	3.5 Reasoning Modalities
	3.5.1 Distinct Modalities
	3.5.2 Mechanistic Identification


	4 Conclusion
	4.1 Summary of Findings
	4.2 Implications
	4.3 Limitations and Future Work

	References

